LONDIOLINE

par Georges JENNY

×

conception et réalisation

*

initiation à la lutherie électronique

×

La « Lutherie Electronique », c'est-à-dire la construction d'instruments de musique en partant d'une source non plus directement mécano-acoustique (comme c'était le cas jusqu'ici pour un violon, un saxophone, etc.) mais d'une source électronique (circuits oscillants à fréquence musicale), est née juridiquement en 1915, sous la forme d'un premier brevet par l'Américain Lee de Forest, père bien connu de la lampe triode.

Depuis cette date, des centaines de chercheurs, dans le monde entier, se sont attaqués à ce problème : créer des sons « harmonieux » dignes de rivaliser avec ceux qui sortent — entre des mains expertes, s'entend — des différents instruments de l'orchestre.

De même qu'en facture instrumentale, il existe en gros deux grandes familles d'instruments: les polyphoniques (orgue, harmonium, piano, etc.) et les monodiques, mais « super-expressifs » (violon, flûte, clarinette, trompette, et autres instruments solistes de l'orchestre), de même, en électronique, deux grandes familles existent déjà: les orgues électroniques d'une part, et les instruments monodiques d'autre part. C'est de ces derniers — auxquels s'applique d'ailleurs plus correctement le terme de « Lutherie Electronique » — qu'il sera question dans les pages qui vont suivre.

Les principaux et premiers chercheurs dans ce domaine, en France, ont été Hugoniot (1920), Givelet, Bertrand, Martenot, Péchadre et bien d'autres. L'auteur de l'étude ci-après, inventeur de l'Ondioline, est venu à la musique électronique bien après ces pionniers. Il a pu ainsi faire une première synthèse des recherches effectuées par ses prédécesseurs. En raison de la technique de leur époque: haut-parleurs à cornet nasillards, oscillateurs instables, etc., certaines idées étaient alors irréalisables; elles sont devenues réalités possibles, entre temps. Ces idées excellentes avaient donné lieu à des brevets qui sont tombés dans le domaine public, tel celui de Lee de Forest et bien d'autres, sans avoir été « payants » — loin de là! — pour leurs auteurs, car les vingt ans de durée légale du brevet sont vite passés! Nous avons nous-mêmes des brevets qui datent déjà de quinze années...

Le moment semble maintenant venu de faire le point en musique électronique. Dans ce petit ouvrage, une première partie sera consacrée à préciser quelques notions touchant aussi bien artistes musiciens que techniciens radio mais que les uns et les autres expriment dans des langages parfois très différents. Nous nous efforcerons donc de dégager des définitions claires sur les qualités requises et sur la raison d'être de tel ou tel organe indispensable dans un instrument de musique électronique, monodique.

La deuxième partie pourra ainsi décrire dans le détail les différents éléments qui composent l'Ondioline, l'un des derniers nés de cette sorte d'instruments. La parole — ou plutôt l'action — sera laissée ensuite au lecteur désireux, pour luimême ou pour un ami musicien, de faire précéder sa chaîne « Haute Fidélité » d'un instrument de musique électronique doté des derniers perfectionnements... qu'il pourra naturellement revoir, corriger et compléter à son gré!

Si certaines pièces détachées, tel le clavier expressif, ou certains circuits sélecteurs de timbres, sont pratiquement impossibles à réaliser correctement de toutes pièces par l'amateur — par contre, l'assemblage de ces quelques sous-ensembles spéciaux, le câblage, la mise au point, la liaison correcte avec un amplificateur B.F. de bonne qualité sont de la compétence du technicien professionnel ou isolé — pour peu qu'il ait un schéma correct sous les yeux, et que lui-même ou un ami musicien ait une oreille suffisamment exigeante pour discerner le faux du juste.

Et, considération importante, c'est peut-être grâce à l'amateurisme que la musique électronique trouvera sa pleine expression, comme jadis les ondes courtes, car il reste encore beaucoup à inventer et à expérimenter dans ce domaine...

Nous serons donc heureux de conseiller et de faire collaborer entre eux tous les amateurs que la construction d'un « violon d'Ingres électronique » pourrait tenter

Parlons la même langue...

Dans ces pages, un certain nombre de chapitres vont être consacrés à la description d'un instrument de musique nouveau: un tel sujet embrasse à la fois la technique électronique et la facture instrumentale. Il nous paraît avantageux et même indispensable de consacrer un premier chapitre au rappel et à l'établissement de quelques définitions solides des termes qui serviront de pont entre les deux techniques.

Musiciens et radio-techniciens pourront s'y référer à loisir pour tenter de parler un langage commun. Et nous espérons que de ce fait, il sera possible d'éviter ou de détruire des malentendus qui risquent autrement d'aller en grandissant.

Nous nous adressons ici au lecteur radio-technicien, mais si ce technicien « a dans son cœur un musicien qui sommeille », alors, voilà pour nous le lecteur rêvé, et nous allons pouvoir lui demander un léger sacrifice : s'armer de patience avant d'arriver aux schémas d'oscillateurs, de détimbreurs, de modulateurs de fréquence, etc. qui lui sent domaines familiers; et faire préalablemest avec nous une incursion un peu longue, nous nous en excusons par avance, dans un domaine jusqu'ici mal étiqueté; nous conviendrons ainsi ensemble, peu à peu, d'un certain vocabulaire qui, une fois bien défini, nous permettra de mieux nous entendre lorsque nous étudierons comment obtenir électroniquement tel effet de hautbois, de guitare, ou autre.

Premier malentendu

« Vous voyez », s'écrie dédaigneusement notre ami Stradi-Invarius, le tenant de la vieille lutherie Renaissance, « avec votre musique électronique, vous voulez imiter (et mal, forcément) un hautbois, une guitare... Quelle pitié! »

Allons-nous répondre? Et tenter de lui expliquer que, si nous appelons une certaine couleur : « Hautbois » et un certain « transitoire » particulier : « Guitare », la faute en est à ses ancétres à lui, Stradi-Invarius, qui donnèrent jadis un même nom à la machine qui sert à fabriquer les sons et au produit lui-même : le son obtenu. Les peintres (plus favorisés en ce sens que les musiciens) ont toujours dis-

posé d'une gamme pratiquement continue de couleurs et connaissaient des moyens différents pour produire tel bleu clair ou tel rouge foncé. Ils ont donc appelé un chat un chat...

Les musiciens, eux, jusqu'ici, ne disposant que d'une gamme de timbres (couleurs), discontinue et, de plus, ne connaissant qu'un seul outil (lisez « instrument de musique ») pour produire telle couleur précise (lisez tel timbre) défini, ont (répétons-le, car c'est très important à retenir) donné au produit sonore le nom de la machine (instrument) qui sert à l'obtenir.

La question se complique du fait que l'oreille, au cours des siècles, a associé le complexe « timbres-transitoires » que représente par exemple le violon avec ses qualités et défauts propres. L'oreille est donc déroutée par l'électronique qui peut à volonté associer ou dissocier le complexe « timbres-transitoires », ce que ne pouvaient naturellement pas les instruments de l'orchestre dits « classiques ».

Sous cette réserve, reprenons le parallèle proposé entre musique et peinture. Admettons que le hautbois corresponde à la couleur verte, pour faire plaisir aux amateurs « d'associations » agrestes et pour éviter de l'affubler d'un numéro d'identité qui indiquerait par exemple sa teneur en « harmoniques » et en « formants ».

Dans l'orchestre classique, cette couleur sonore s'obtenait en soufflant dans un chalumeau tout en bouchant savamment tel ou tel trou. Pour obtenir la couleur voisine — le hautbois d'amour par exemple — il vous faudra, mon ami Stradi-Invarius, vous rendre au musée du Conservatoire, y extraire un hautbois d'amour de sa vitrine, et réapprendre, de vos dix doigts, à boucher des trous disposés différemment.

Ne marquerai-je donc pas un point sur vous, cher Stradi-Invarius, si j'obtiens le hautbois ordinaire (le vert feuille) en jouant simplement sur un clavier — et le hautbois d'amour (vert galant en somme...) en jouant sur le même clavier avec un doigté identique... Les lecteurs électroniciens auront déjà compris qu'il nous suffit, en effet, de modifier de quelques picofarads la valeur d'un condensateur pour obtenir une légère variante dans le timbre...

Grâce à l'électronique, la lutherie peut donc remédier à l'un des plus graves inconvénients auxquels ne pouvaient échapper les instruments mécano-acoustiques : la nécessité d'avoir chacun un doigté propre et d'obliger ainsi le musicien à apprendre pour chacun un jeu différent, à tel point que dans bien des cas une seule couleur (et donc un seul instrument) a été conservée, tandis que les autres instruments de sonorité voisine, mais de timbre différent, étaient relégués dans les musées... Il en est ainsi notamment des hautbois, des saxophones, des violons et des violoncelles, etc., qui ont des « proches parents » ayant chacun une tablature (clavier) différente pour une échelle de son équivalente, et c'est pourquoi les hautbois d'amour comme les violes de gambe et comme bien d'autres ne se trouvent plus que dans des musées.

Mais vous pouvez m'objecter, mon cher Stradi-Invarius, que la « sono-rité », l'attaque mordante du hautbois, vous ne la retrouvez peut-être pas exactement dans son équivalence électronique.

Mais pourquoi comparer à tout prix... sauf, bien entendu, si l'oreille — une oreille dégagée de tout préjugé — n'y trouve pas son compte. D'autre part, mon cher Invarius, je ne prétends pas que mes sélecteurs de timbre, mon dispositif de commande des transitoires, mes haut-parleurs, et surtout, mes enceintes acoustiques aient atteint, en quelques années, la perfection à laquelle votre hautbois était parvenu à l'issue de nombreux siècles. Laissez-moi, ou plutôt laisseznous (car les chercheurs sont de plus en plus nombreux dans ce domaine tout neuf), laissez-nous seulement quelque cinq ou dix ans, et vous verrez...

La lutherie électronique en est encore à ses débuts. Mais, étant donné les ressources neuves auxquelles elle fait appel, et les rigides lois de pure acoustique que la science électronique permet de tourner, gageons que des instruments de musique de même valeur artistiquement parlant que les plus merveilleux produits du passé, vont naître de la collaboration fructueuse des techniciens de l'électronique et des musiciens amoureux du beau

Et même, avouons qu'il nous semble logique que des résultats supérieurs, sur le seul plan artistique, puissent être atteints un jour.

TABLEAU

VOCABULAIRES COMPARÉS DU RADIO-TECHNICIEN MUSICIEN ET DU

Symboles proposés	Définition électroacoustique correspondante	Equivalence dans le vocabulaire du musicien	Terminologie proposée valable à la fois pour le musicien et le radio-technicien
Fm	Modulation (périodique) de la fréquence	Vibrato	Vibrato
Fv_{*p}	Variation apériodique de la fréquence	Glissando, portamento,	Glissando
Am	Modulation (périodique) de l'amplitude	port de voix Trémolo	Trémolo
Av_{sp}	Variation apériodique de l'amplitude, divisée en :		
Av., 1	Variation rapide (moins de 1/10 de sec.) en amplitude ; transitoires	Attaque (terminologie variée suivant l'instrument considéré).	Mode d'attaque; ou forme du son transitoire
Avar 2	Variations lentes de l'amplitude	Nuances	Nuances
$\mathbf{F}_{\mathfrak{m}}$	Fréquence modulatrice	« Qualité » de vibrato, plus ou moins « serré » ou « large »	Vitesse du vibrato
ΔF	Variation de la fréquence autour de la fréquence moyenne F, lors d'une modu- lation du son en fréquence : excursion de fréquence	« Qualité » de vibrato, plus ou mains ample	Amplitude du vibrato
$\Delta F/F$	Taux d'excursion de fréquence		

Sons « morts »

Un son « fixe » est défini classiquement par quatre qualités (1):

Symboles proposés (2)

1)	Sa hauteu	r	ot	1	1	Œ	.e	q	U	ιe	n	C	6				F.
2)	Son intens	sité				¥	+		+					×			A
3;	Son timbr	е.	,		,												H
4)	Sa durée																D

Par « son fixe », nous supposons un son, en quelque sorte « photographié » dans une portion de temps pendant laquelle aucun des 3 éléments ci-dessus (hauteur, amplitude, timbre) n'aurait varié.

En réalité, aucun son de ce genre n'a de sens pour l'oreille, puisque

toute manifestation sonore s'écoulant (1) Aux trois facteurs classiques hauteur du son, intensité ou amplitude et timbre, la technique électro-acoustique, nous obligerait en toute rigueur à ajouter une considération de phase (P), relative au décalage entre fondamental et harmoniques et que les musiciens, même s'ils le discernent, ne peuvent évidemment pas définir clairement en termes d'esthétique. Pour simplifier,

dans les tableaux qui suivront. (2) C'est volontairement que nous n'emploierons pas la minuscule f pour la fréquence, car, en musique, ce symbole est universellement utilisé pour indiquer les nuances : f = forte; ff = fortissimo.

nous en ferons cependant abstraction ici

dans le temps a donc un commencement et une fin. Et ce commencement, comme cette fin, supposent une variation de «A» (l'amplitude), au moment du passage du silence à l'amplitude fixe « A », et inversement. Remarquons en passant que le son le plus proche de ce son fixe théorique est justement celui que l'on obtient sur un orgue électrique à attaque brutale, en appuyant sur une des touches du clavier, après avoir calé dans sa course la pédale d'expression et bloqué tout effet de trémolo ou vibrato.

Musicalement parlant, un tel son pourrait être à juste titre qualifié de « son mort », « sans âme » diront les musiciens... Mais justement, ce passage brutal, quasi instantané, du silence (ou amplitude « zéro ») à une amplitude fixe « A » et inversement, a influé fâcheusement sur la valeur esthétique du son ainsi obtenu.

Nous avons renouvelé, plusieurs fois, une expérience probante sur ce point : à des musiciens professionnels, compositeurs, chefs d'orchestres, nous avons fait entendre trois ou quatre timbres que nous avions préalablement choisis très différents les uns des autres et bien définis à l'oscillographe. Nous les avons émis plusieurs fois dans le même ordre, en changeant sculement le mode d'attaque ou d'évanouissement sonore. Les auditeurs sollicités de définir par écrit la qualité des timbres entendus ont donné à des rigoureusement timbres pourtant

identiques des qualificatifs très différents selon l'enveloppe (le transitoire) qui les amenait de l'intensité « zéro » à une intensité fixe « x », ou qui les faisait disparaître. Si nous ajoutons à ces « attaques » des vibratos, ou des trémolos différents, même le plus « calé » est complètement perdu, car la notion de timbre pur (teneur en harmoniques) s'estompe de façon frappante devant des facteurs que bien souvent jusque-là nos auditeurs avaient cru secondaires: attaque, modulations.

Pour être complet, nous ne pouvons donc négliger de « raconter » comment notre son «fixe» est venu au monde, et comment il a disparu. En un mot, toute l'histoire des « transitoires », jusqu'ici très négligée dans l'étude de la musique.

Sons « vivants »

Aux éléments qui caractérisent les sons « morts » s'ajoutent donc ceux qui se rapportent à leur déroulement dans le temps.

Nous devrons donc tenter de dresser un tableau des éléments entrant dans la définition aussi complète que possible d'un son, d'une « pâte sonore ». Un son, c'est-à-dire une oscillation à fréquence musicale est susceptible, comme toute oscillation de variations soit périodiques, soit apériodiques, dans sa fréquence, dans son

amplitude et enfin dans la forme d'onde, ou teneur en harmoniques.

En somme, toutes les possibilités d'expression artistique, sur quelque instrument de l'orchestre, aussi raffiné et perfectionné soit-il, pourraient se traduire à tout instant du « mouvement musical », par une formule où « F », « A » et « H » seraient plus ou moins dosés (3)...

Les combinaisons de «F» et «A» entre eux et dans le temps «T» seront représentées par des symboles bien précis qui nous seront fort utiles et qui correspondent à des éléments connus du jeu musical.

Rappelons en effet que notre but essentiel, dans cette petite étude préliminaire, est de préciser un langage commun possible entre techniciens radio et artistes musiciens (qu'ils soient les uns et les autres professionnels ou amateurs, peu importe...). De ce fait, notre tableau I comprend deux premières colonnes où nous tentons de définir scientifiquement le phénomène musical observé, une troisième où nous rappelons le langage souvent trop vague, hélas — employé par les musiciens pour désigner ce même phénomène; enfin, une quatrième colonne où nous proposons, provisoirement du moins, une définition commune acceptable. Remarquons que nous avons évité le mot « sonorité », objet d'une confusion fâcheuse puisqu'on l'emploie tantôt dans le sens de puissance et tantôt pour désigner la qualité du timbre de tel violon ou violoniste par rapport à tel autre.

Ce premier tableau tente d'embrasser tous les modes de combinaisons
élémentaires entre F et A. Afin de
simplifier, nous avons exclu H (timbre, donc teneur en harmoniques) et
P (déphasages entre fondamental et
harmoniques). Nous les avons exclus aussi parce que, en musique monodique, nous l'avons vu plus haut,
ce sont les combinaisons entre F et
A qui sont de loin les principaux
moyens d'expression du langage musical.

De vieilles connaissances

Nos lecteurs salueront au passage la vieille modulation d'amplitude (trémolo de l'orgue de cinéma), symbole adopté Am, et admireront les violonistes qui deux mille ans avant eux, faisaient déjà, comme M. Jourdain faisait de la prose, c'est-à-dire sans le savoir, de la modulation de fréquence (Fm). Par contre, devant la définition qualitative de cette Fm employée par les violonistes: vibrato serré, vibrato large, ils proposeront sans doute avec nous (colonne des

« compromis ») les expressions : vitesse du vibrato, amplitude du vibrato.

Sans vouloir ni pouvoir d'ailleurs tout chiffrer (« négation de l'Art », dira notre ami Stradi-Invarius) nous verrons par la suite combien ces quelques définitions, et même ces formules, nous aideront dans la conception et la construction d'un instrument de

musique électronique.

Sur le glissando, Fv_{np} , variation apériodique de fréquence, il y a peu à dire, sinon que sa laideur ou sa beauté tiennent à peu de chose en apparence : sa combinaison judicieuse avec les autres variables : Av., 1 et Av_{sp}2. C'est tout l'art du musicien, certes, mais l'expérience faite notamment sur des enfants nous a montré que l'exécutant éclairé par ces considérations techniques progresse bien plus vite, même sur un violon véritable, que l'élève à qui le maître n'a pas su expliquer rationnellement ce qui se passe aux points de vue mécanique et acoustique lorsqu'il déplace ses doigts d'une certaine façon sur les cordes.

« Nuances » dans les transitoires

En ce qui concerne la variation non périodique de l'amplitude, Av_{sp} , nous avons cru nécessaire de subdiviser ce phénomène en : A $v_{sp}1$ et A $v_{sp}2$.

A v_{ap}1 = Variation extrêmement rapide et assez importante d'amplitude, pouvant désigner le mode d'attaque de la note. En électro-acoustique, elle a un nom qui nous est familier : transitoire;

A $v_{sp}2 = Variation lente$.

Les assimiler l'une à l'autre créerait une confusion, pour plusieurs raisons :

1) L'oreille ne réagit pas de la même façon à la variation lente et à la variation rapide d'amplitude. Pour un taux de variation appréciable à l'oreille (au moins 2 à 3 dB), lorsque la variation se produit lentement, l'oreille l'apprécie quantitativement et la perception la classe comme variation dans la nuance (P à f = piano à forte) des musiciens (fig. 1 a).

Si, au contraire, la variation est très rapide, l'oreille l'apprécie qualitativement (4); c'est « l'attaque » : coup d'archet « martelé » du violoniste, coup de langue « tu » du saxophoniste.

A l'oscilloscope, l'examen du phénomène montre en outre que la variation d'amplitude de A $v_{*p}1$ au lieu d'être simple comme A $v_{*p}2$ est presque toujours complexe (fig. 1 b);

2) La raison secondaire qui nous fait établir une distinction entre la variation rapide et la variation lente de l'amplitude est la suivante : dans certains instruments mécano-acoustiques, la commande, l'action, sur A v_{ap}1 et A v_{ap}2, est réalisée par des organes différents.

Reprenant l'exemple du saxophone (instrument très expressif), c'est à la langue surtout plus qu'au souffle qu'est confiée l'action de A v_{3p}1. La pression de l'air fournie par les poumons sert aux nuances; c'est donc aux muscles pectoraux et abdominaux qu'est confié pour cet instru-

ment le contrôle de A vap2.

Pour le violon, par contre, A $v_{ap}1$ et A $v_{ap}2$ sont confiés à l'archet (variation combinée de la pression et de la vitesse archet sur corde); en outre A $v_{ap}1$ dans cet instrument peut encore être modifié par les conditions de vitesse et de pression dans lesquelles l'archet entre soudain en contact avec la corde (sautillé, staccato, etc.) d'où les modes subtils d'expression propres à cet instrument et l'un des secrets de son « âme ».

⁽⁴⁾ Le même phénomène de perception, soit quantitative, sont qualitative, se constate à l'audition des sons et des infra-sons. Au-dessous d'une certaine fréquence (quelques périodes par seconde) - perception quantitative l'oreille entend des « tops » qu'elle peut compter; au-dessus d'une certaine fréquence - perception qualitative -l'oreille entend une note de la gamme à laquelle le musicien donne un nom, par exemple lan. Mais l'oreille est incapable de « compter » le nombre de vibrations. Pour dire que le la est constitué par 435 vibrations en une seconde, il faut des appareils spéciaux. Dans le premier cas il y a perception d'un rythme; dans le second, il y a perception

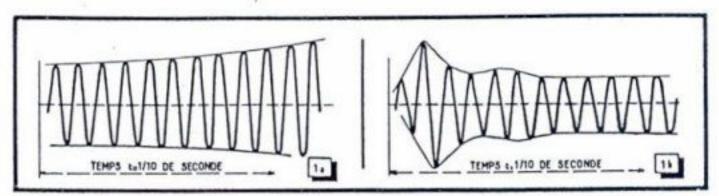


Fig. 1. — Les variations d'amplitude du son affectent différemment l'oreille suivant leur vitesse. Une variation lente (a) est perçue quantitativement et dénommée « Nuance ». Une variation rapide — coup de langue du suxophoniste, par exemple — (b) est perçue qualitativement et le phénomène est classé dans le domaine des transitoires.

⁽³⁾ Nous n'étudierons ici que la monodie, c'est-à-dire le cas d'un seul son variant dans le temps, et non l'harmonie qui, elle, est la science des accords.

TABLEAU II COMPARAISON DE DIFFÉRENTS INSTRUMENTS ET DE L'ONDIOLINE

	Violon	Saxophone	Orgue	Voix humaine	Ondioline
I. — Source d'énergie primaire :	Musculaire	Musculaire	Electrique	Musculaire	Electrique
 Transforma- tions de l'énergie jusqu'au point d'utilisation et mo- de final de pro- duction des oscil- lations à fréquen- ce musicale : 	l'archet frottant sur une corde : trans- formation par ce dispositif d'un mou- vement continu (ar- chet) en un mou- vement alternatif à fréquence musicale	courant d'air provo- quant l'oscillation d'une anche cou- plée avec un tuyau.	maintenant cons- tante la pression dans un réservoir); pression de l'air agissant sur une anche, ou sur une embouchure asso-	que, agissant sur les « cordes voca- les » (anches bat- tantes) de l'exécu-	Transfor- motion d'une ten- sion continue en une oscillation à fréquence musicale.
III. — F vap M o y e n s d'action sur la fréquence et organes permettant cette action pen- dant le jeu de l'exécutant :	(corde vibrante). Variation de la position du doigt le long de la corde.	Soupapes bou- chant des ouvertu- res pratiquées dans le corps (tuyau) de l'instrument et ma- nœuvrées par les doigts de l'exécu- tant. Pression des vres sur l'anche :	Aucune en cours de jeu. (Il faut un tuyau par fréquen- ce à émettre),	Tension muscu- laire exercée sur les « cordes vocales ».	Variation de cer- t a i n e s grandeurs électriques (résis- tances, capacités) dans les circuits de l'oscillateur.
Modalités possibles offertes à l'exécu- tant, dans ces va- riations Fv _{*P} de la fréquence :	A volonté conti- nue (glissando) ou discontinue.	variations dans la	Aucune	Continue et dis- continue.	Continue (pour certains m o d è l e s seulement) et discontinue (par clavier).
Plage de fréquen- ces couverte :	4 octaves	2 1/2 octaves	_	Environ 2 octa- ves.	5 à 8 octaves se- lon les modèles.
sur l'attaque (transitoires) : V. — A vap 2	(variation en pression et en vitesse sur la corde). Très fin, par l'archet; cependant, les « pianissimo » sont difficiles et limités à un seuil inférieur. Limitée par la longueur de l'archet. Vibrato finement dosable.	langue). Assez fin, mais limités dans les « piano » et « forte » par le danger d' « octavier ». Limitée par la capacité respiratoire. Fm et Am semblent se combiner et sont sans doute difficilement séparables par l'exécutant, ne naturel dû à la	par fermeture de volets étouffant le son). Illimitée. Impossibles avec un seul tuyau.	et varié grâce au mécanisme des con- sonnes. Très fins. Limitée par la capacité respiratoire. Vibratos et trémolos intimement combinés (Par construction ou mauvaise éducation?).	ciables à volonté et finement dosables. Peut être conser-
du timbre avec la puissance : IX. — H (harmoniques et formants). Moyens d'action sur le timbre en cours de jeu :	Varie très peu mais très finement selon la distance archet - chevalet, la corde utilisée et la pression du doigt sur la corde, l'incli- naison de l'archet sur la corde, la por- tion de l'archet uti- lisée (milieu, pointe talon) et le degré de pression et de vi- tesse.	Varie assez sen- siblement : action jusqu'ici mal défi- nie : lèvres, langue, etc	Immuable.	Merveilleusement subtil et varié, grâ- ce au mécanisme des voyelles; varia- tion soit disconti- nue, soit continue, possible par varia- tion instantanée des dimensions des ré- sonateurs naturels bucaux,	Très subtil et va- rié; théoriquement infini par action sur les dimensions élec- triques des filtres.

Le tableau I une fois assimilé et admis par nos lecteurs (et leurs amis musiciens, avec qui ils pourront discuter à loisir, cela pouvant devenir d'ailleurs passionnant), nous pourrons passer au tableau II : comparaison entre différents instruments de musique mécano-acoustiques (violon, saxophone, orgue, voix humaine chantée) et un instrument électro-acoustique : l'Ondioline.

Ce tableau fait ressortir, lorsqu'on le lit verticalement (de haut en bas, colonne par colonne), combien tout instrument de musique peut être considéré, sous un certain angle, comme une machine inventée par l'homme en vue de la «fabrication» de sons... Comme toute machine, il suppose : une source d'énergie; des organes (moteur, relais) de transformation de cette énergie; enfin, des organes de commande et de contrôle, en vue de permettre à l'exécutant de modifier à tout instant et de façons diverses les « qualités » du produit débité par la machine...

Commentaires concernant le tableau II:

I. — Dans un instrument comme le violon, c'est l'homme qui est à la fois source d'énergie et premier moteur de la machine, d'une part, et conducteur, contrôleur de cette même machine, d'autre part.

Dans le cas de l'Ondioline, l'énergie n'est pas fournie par l'homme, mais seulement façonnée par lui; nous en verrons plus loin les conséquences (avantages et dangers).

II a. — Transformation de l'énergie jusqu'au point d'application : nous voyons apparaître ici les « relais » inévitables entre l'homme et l'organe producteur de sons; dans le violon, par exemple, c'est l'archet qui, enduit de collophane et frottant sur une corde tendue, permet la transformation d'un mouvement continu relativement lent en un mouvement alternatif à fréquence musicale. Cette observation a son importance, car elle rappelle au musicien qu'il ne peut agir qu'indirectement sur la production sonore. En somme, parmi tous les êtres vivants qui produisent des sons musicaux, seuls, la mouche et le moustique engendrent directement un son à fréquence musicale, en agitant, par une action musculaire prodigieuse, leurs ailes plusieurs centaines de fois par seconde.

II b. — Production d'oscillations à fréquence musicale : dans les instruments de musique antérieurs à l'électronique, l'oscillation est obtenue par ébranlement, soit d'un corps solide (corde, languette, peau, etc.), soit d'une matière déjà plus subtile : une colonne d'air (notamment dans le cas de la flûte). Dans les instruments de musique dits électroniques, le matériau ébranlé est plus subtil encore, puisque c'est le flux électronique que l'on oblige à s'agiter en cadence... Mais les lois naturelles qui expliquent et définissent le phénomène vibratoire sont les mêmes, on le sait, qu'il s'agisse d'une corde tendue ou d'un circuit accordé : oscillations à plusieurs degrés de liberté, oscillations forcées, phénomènes de résonance, etc.

Logiquement, l'oscillation électronique devrait être plus finement maniable — si l'on peut dire! — que l'oscillation de matériaux plus grossiers qu'elle. Et l'expérience prouve qu'il en est bien ainsi. Mais le problème est de bien choisir les moyens d'action et de contrôle sur le phénomène oscillant. Tout l'art du luthier — électronicien ou non - réside d'ailleurs en cela! Les alinéas III, IV etc., du tableau sont une esquisse des moyens mis en œuvre par le fabricant d'instruments de musique pour aboutir à ces résultats, selon l'instrument considéré. Ces remarques font en même temps apparaître les avantages ou au contraire les difficultés rencontrées, avantages ou difficultés inhérents aux lois mécano-acoustiques ou électroacoustiques.

Nous ne pouvons nous laisser entraîner, dans cette courte étude, à analyser en détail, et à commenter en les comparant, pour chaque paramètre, les qualités et défauts propres à chaque instrument. Le lecteur le fera d'ailleurs de lui-même en passant pour chaque alinéa d'une colonne à l'autre; il aura intérêt à se reporter fréquemment par la suite à ce tableau, lorsque nous étudierons les solutions électroniques proposées.

Pour clore ce premier chapitre

En résumé, il existe en musique mélodique (ou monodique) des exigences dans l'expression, dans le jeu du soliste, que chaque instrument de musique, chacun à sa manière, peut rendre plus ou moins parfaitement.

Si l'on veut, la ligne mélodique est comme l'expression d'une pensée -et se déroule d'ailleurs comme elle. Les instruments de musique monodiques représentent dans leur ensemble les organes d'expressions possibles de cette pensée; il ne serait donc pas excessif, à notre avis, de parler de phonétique instrumentale, et notre tableau ne tente rien moins que de définir, encore que très grossièrement, les différentes branches de cette phonétique, branches qu'il conviendrait de préciser davantage et d'approfondir, ce qui n'est pas la raison d'être de cette étude.

Mais c'est à dessein que nous avons fait figurer dans ce tableau, parmi les instruments de musique, le gosier humain. Comparé aux autres instruments, il apparaît, du point de vue de l'expression, comme l'instrument roi, car par ses attaques variables (consonnes), et ses timbres finement dosables et mouvants à chaque instant (voyelles), il laisse loin derrière lui les instruments à cordes et à vent de l'orchestre. Nous verrons comment la musique électronique pourrait le suivre sur ce terrain, tout en le dépassant sur d'autres, car l'organe vocal est par contre assez limité en étendue (deux octaves à peine), en puissance et en vélocité.

Mais alors se posera de façon encore plus ardue le problème de la commande simultanée de tant de paramètres : nuances, attaques, vibratos, glissandos, timbres variables de façon continue ou discontinue, etc. Les deux mains et les deux pieds sont vite

mobilisés! Mais après?

Nous voilà prêts, en tout cas, à aborder « en connaissance de cause » l'étude des différentes parties d'un instrument de musique électronique et de ses différents moyens d'expression. Par exemple, il nous sera possible de comprendre qu'une vielle (instrument à archet tournant et à touches), bien que de la même famille qu'un violon (famille des cordes), en est aussi éloignée, sur le plan de la phonétique instrumentale, que l'idiome papou l'est de la langue de Gæthe; nos lecteurs pourront comprendre désormais qu'en lutherie électronique, il existe des « vielles » et des « violons », et qu'ils peuvent aspirer à la construction de l'un ou de l'autre.

Nous examinerons maintenant comment, électroniquement, il est possible de trouver des solutions satisfaisantes à ces problèmes.

Premiers contacts avec le schéma de l'Ondioline

Nous venons de voir quelles étaient les qualités d'expression que l'on était en droit d'attendre d'un instrument de musique monodique - électronique ou non — et comment, chacun à leur manière, les instruments classiques de l'orchestre répondaient à

ces exigences.

Notre conclusion était la suivante : Un instrument de musique est d'autant plus « évolué » qu'il met à la disposition de celui qui s'en sert des moyens d'expression à la fois plus nombreux et plus subtils. En d'autres termes, peu importe la langue employée; ce qui compte, c'est la richesse du vocabulaire mis à la disposition du compositeur et de l'exécutant.

Ces moyens d'action sur la matière sonore, nous les avons réunis et résumés en un tableau publié page 11 et qui nous servira pour apprécier le « degré d'évolution » d'un instru-

ment de musique donné...

N'oublions cependant jamais qu'un instrument de musique, fût-il un « Stradivarius », n'est qu'un organe; l'âme, l'intelligence créatrice sont en deçà, du côté de l'exécutant.

Négligeons maintenant le côté « expression », c'est-à-dire action possible sur le produit sonore, et considérons la façon dont ce produit lui-même s'élabore, depuis le générateur d'oscillations à fréquence musicale, jusqu'au moment où le son s'échappe dans l'air environnant, à destination de nos oreilles.

Le tableau de la figure 2 nous montre quatre maillons principaux de cette chaîne:

- A Production des oscillations à fréquence musicale;
 - B Modification de leur forme:
 - C Leur amplification:

D - Leur diffusion en milieu atmosphérique.

Certains de ces chaînons nous sont évidemment familiers en B.F. Mais plutôt que de chaîne Haute Fidélité, mieux vaudrait parler ici de « Haute Infidélité » dirigée...

Le tableau nous révèle que dans le processus de formation des oscillations, il existe des analogies intéressantes et encourageantes entre les différents instruments de musique monodiques.

Pour l'obtention d'un timbre déterminé, les circuits résonnants B pro-

pres à l'instrument restent accordés constamment sur la même fréquence, ou la même bande de fréquences quelle que soit la fréquence de l'oscillation délivrée par l'oscillateur A, fréquence qui, elle, varie tout au long de l'échelle musicale.

L'oscillateur A donne telle ou telle note, autrement dit commande la hauteur du son; le ou les circuits résonnants B commandent le timbre.

Nous les avons supposés, pour l'instant (ces circuits B), accordés de façon invariable, ce qui est vrai pour le violon et le saxophone seulement. Les dimensions de la caisse ou de l'ensemble tuyau-pavillon y sont invariables par construction. Tandis que, nous l'avons vu, pour la voix hu-maine ou l'Ondioline, les circuits B peuvent être désaccordés à volonté (d'où variation très sensible du tim-

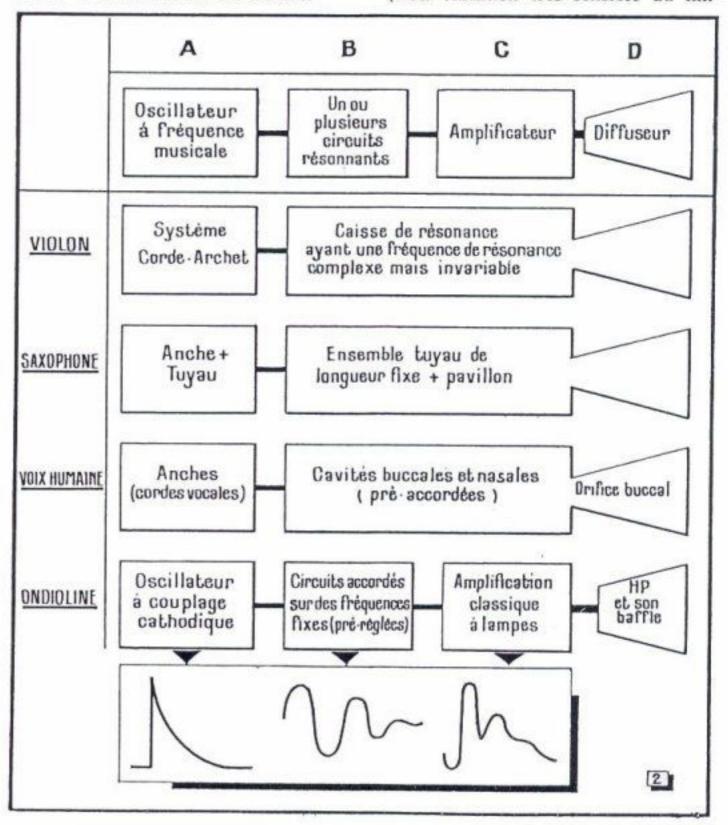


Fig. 2. — Pour différents instruments de musique, et même pour la voix humaine, le processus de formation d'un son de timbre déterminé est identique.

bre). Mais ici, nous supposons les circuits B fixes, préalablement accordés et ne bougeant plus durant l'examen oscillographique des phénomènes. Par contre, nous admettrons que la fréquence délivrée par A varie, comme elle le fait naturellement en cours de jeu selon que le musicien agit sur la tablature (clavier à touches ou non, peu importe ici) de l'instrument.

Que se passe-t-il alors? Tout d'abord, remarquons qu'un fonctionnement correct, dans ces conditions (générateur à fréquence variable A, excitant un ou plusieurs circuits accordés de façon invariable B), n'est possible que si l'oscillation A est une oscillation de relaxation, ou s'en approchant par la forme. Et il en est ainsi, dans tous les instruments monodiques, à corde ou à vent, de l'orchestre, et également pour la voix humaine (1).

C'est cette oscillation de relaxation que l'oreille perçoit, comme déterminant la hauteur de la note entendue (par exemple, pour le la note-diapason de l'orchestre, cette oscillation de relaxation est de fréquence 435 Hz).

Par contre, la fréquence propre au résonateur B, relancé « in tempo » par l'impulsion A, est une onde amortie, de fréquence fixe, et c'est elle que l'oreille perçoit en tant que timbre propre de l'instrument. C'est du moins la théorie des « Formants », que la construction d'instruments de musique électronique, conçus sur le principe de l'Ondioline, met lumineusement en évidence. Cette théorie des « Formants » est vraie, non seulement pour la voix humaine (théorie des voyelles), mais pour tous les instruments sclistes de l'orchestre.

Quelques exemples

En réalité, l'impression auditive du timbre (en tant que « couleur » déterminée d'un son émis de façon continue) est due à l'association, dans un spectre sonore, de l'impulsion A et sa teneur en harmoniques (harmoniques de tous rangs) et du ou des différents formants (trains d'ondes amor-

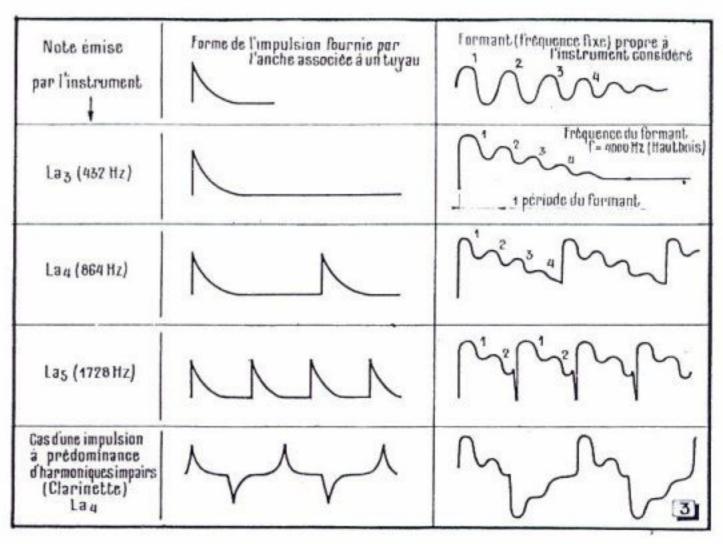


Fig. 3. — Schématisation des oscillogrammes relevés en différents points (A et B) des chaînes de la figure 2. Les trois premières lignes correspondent au hautbois et la quatrième à la clarinette.

tis. de fréquences fixes x, y, z, etc.) engendrés par ces imuplsions, puis mèlés ou modulés par elle.

La figure 3 nous donne un exemple de ce qui se passe dans le cas du hautbois (trois premières lignes) puis dans celui de la clarinette, dont les fréquences de formants sont sensiblement les mêmes, mais dont les ondes d'excitation sont de formes très différentes.

Le corps résonnant de fréquence fixe du hautbois, constitué par le tuyau associé au pavillon, est excité par une impulsion fournie par l'anche (2). Remarquer que pour une fréquence d'excitation de 432 ou de 864 Hz, le « formant » a le temps de s'amortir totalement avant d'être relancé par le « top » suivant. Il n'en est plus de même, évidemment, pour des « tops » de fréquence supérieure à 1000 Hz. L'oscillation de résonance du « formant » se trouve brisée par un nouveau relancement, avant d'avoir

pu s'éteindre par amortissement.

Le « timbre » du hautbois reste pourtant caractéristique à l'oreille, quel que soit le registre, aigu ou grave, dans lequel joue l'instrumentiste, ce qui prouve que c'est bien la fréquence du formant qui domine dans l'impression générale du timbre. En effet, si l'on change la fréquence de résonance du formant (lors de la reconstitution électronique du timbre hautbois) sans changer la forme du « top » excitateur, le timbre se modifie très vite.

Précisons que, dans la réalité, l'on trouve à l'analyse plusieurs fréquences de résonance de la ou des cavités génératrices de formants, d'où une image oscillographique souvent beaucoup plus complexe que celles, schématisées, de la figure 4. Mais ce qu'il convient de retenir pour l'instant, c'est la co-existence dans tout son instrumental ou vocal (en plus naturellement du son fondamental):

vrages classiques spécialisés remontant à une dizaine d'années s'appuient sur des théories divergentes. La comparaison des oscillogrammes fournis par un hautbois, une clarinette, un violon, avec ceux obtenus par les méthodes électroniques décrites ci-après est trop frappante cependant (et les impressions sonores ressenties sont également trop similaires) pour que la théorie des formants puisse être mise en doute désormais. De ce point de vue, le développement de la « Lutherie Electronique » doit faire faire un grand pas en avant à l'étude fonctionnelle des instruments de musique en général.

⁽¹⁾ Par contre, dans un instrument polyphonique, comme l'orgue, les problèmes sont différents; chaque tuyau est excité par une seule fréquence, et peut 'être accordé, quant à sa forme, pour « résonner » au mieux avec cette fréquence excitatrice; autrement dit, un tuyau d'orgue pourra aisément rayonner dans l'air environnant une onde de forme sinusoïdale (c'est à peu près le cas du jeu dit de « Bourdon » ou de « Flûte »). Par contre, un instrument monodique de l'orchestre délivrera rarement - et en tout cas sculement pour certaines notes de la gamme - une onde quasi sinusoïdale.

⁽²⁾ Dans les instruments à vent, le rôle du tuyau est en réalité double : Associé à l'anche, il intervient avec elle dans la détermination de la fréquence (par bouchage ou débouchage des trous ménagés le long du tuyau). D'autre part, l'on sait que selon la coupe cylindrique ou conique du tuyau (fermé à un bout), celui-ci délivre des séries d'harmoniques impairs ou pairs. Ensuite, dans son association avec le pavillon, le tuyau peut être considéré comme générateur de « formants », c'est-à-dire de trains d'ondes amorties de fréquence fixe quelle que soit la fréquence excitatrice. Ces problèmes ont été jusqu'ici insuffisamment étudiés. Tous les ou-

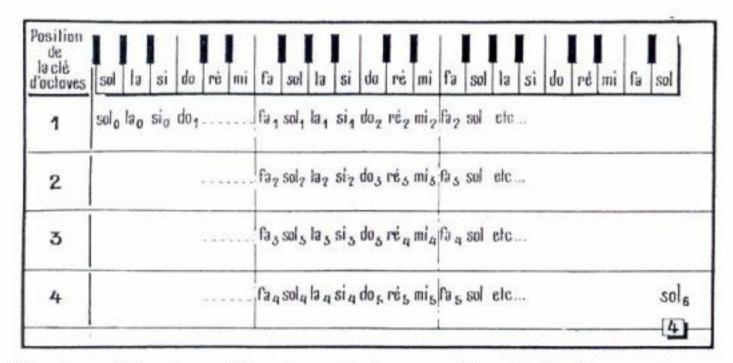


Fig. 4. — Selon la position du contacteur appelé « clé d'octaves », la première touche Fa du clavier correspondra au fa, au fa, au fa, ou au fa, de l'échelle musicale.

1º D'harmoniques (contenus en général dans l'impulsion excitatrice, ou renforcés par son association, en tant que générateur, a un tuyau ouvert ou fermé);

2º De « formants », qui sont sans rapports arithmétiques directs avec la fondamentale ou ses harmoniques et qui ne varient pas en fréquence quand la fondamentale, elle, varie.

La forme du «top» excitateur a une influence importante sur le timbre, cela se conçoit sans peine, ne serait-ce que par la façon dont un circuit résonnant réagit à une excitation, plus ou moins pointue ou brève. De même, l'amortissement des circuits ou cavités résonnantes intervient dans la forme de l'image finale, décelable à l'oscillographe en fin de chaîne («facteur de surtension» des électriciens).

Si, de plus, l'onde excitatrice A n'est pas un «top» positif ou négatif, mais successivement les deux, comme dans le cas de la clarinette (onde excitatrice contenant surtout des harmoniques impairs), l'image résultante (fig. 3, dernière ligne) sera très différente, et l'impression auditive également très caractéristique.

Le musicien, irrésistiblement, s'écriera: «L'on sent vraiment l'instrument à vent «en bois» (flûte en bois, clarinette)». Pure association audio-visuelle: tuyau en bois = son de clarinette, mais sans signification réelle, car l'on a réalisé des clarinettes en métal et en matière plastique sans que la sonorité en soit pratiquement aftérée.

Dans la figure 2, nous avons reproduit séparément les quatre maillons A B C D. Cependant, dans les instruments mécano-acoustiques, les organes BCD sont souvent réunis en un seul. Par exemple, la caisse de résonance du violon est à la fois résonateur-générateur de formants en tant que cavité (de forme d'ailleurs bien complexe); amplificatrice des ondes engendrées par les cordes (si l'on supprime la caisse, non seulement le timbre est modifié, mais la puissance sonore est considérablement réduite); enfin, la table et le fond, relié à la table par l' «âme» (3), servent de « diffuseurs », transmettant les vibrations mécaniques à l'air, selon les lois identiques à celles que l'on retrouve dans les règles d'adaptations d'impédances. Même remarque pour l'ensemble tuyau-pavillon d'un saxophone ou d'une trompette...

Il n'y a donc que dans un instrument de musique électro-acoustique qu'il soit possible, et utile, de distinguer nettement les 4 maillons. Nous verrons cependant que la séparation des fonctions, même en électro-acoustique, n'est pas absolument parfaite, et peut-être, d'ailleurs, pas toujours souhaitable, d'où l'explication de l'obtention de résultats parfois très intéressants sur le plan esthétique, avec un matériel et un H.P. de second ordre. Le tout est de savoir, tout de même, ce qui se passe exactement dans ces cas-là; mais n'anticipons pas...

Retour à l'électronique

Si le lecteur nous a suivi, patiemment... ou non, jusqu'à ce point de notre exposé, nous pensons qu'il va être désormais payé de sa peine. Du moins n'aura-t-il plus le droit de se poser — et de nous poser — des questions telles que : « Mais comment faites-vous pour que le timbre de votre instrument électronique « suive » fidèlement, quelle que soit la note émise? Au prix de quelle mécanique compliquée vos circuits de timbres restent-ils accordés avec votre

générateur de fréquence, lorsque celui-ci monte du grave vers l'aigu? », ctc.

La réponse, on l'a vu, est la suivante : il n'y a pas de mécanisme compliqué...

Nous n'avons fait qu'étudier ce qui se passe dans les bons vieux instruments mécano-acoustiques des siècles passés, et reproduire les mêmes phénomènes, ou à peu près, sur le plan électro-acoustique. L'erreur de certains chercheurs a été justement de partir d'un son d'hétérodyne et d'en vouloir faire un instrument de musique. Mais, de même que la nature a horreur du vide, de même l'oreille semble avoir horreur des sons simples. Nous le verrons plus loin, le manque d'attaque, de mordant et de brillant possible dans l'attaque, était un autre écueil à éviter. Les premiers instruments de musique électronique ressemblaient, pour ces deux raisons, beaucoup à la scie musicale ou à la sirène d'alerte...

C'est pourquoi cette étude préalable, cette « méditation » sur les instruments déjà existants était à notre avis indispensable. Nous avons en somme tenu à faire parcourir au lecteur le chemin que nous avons nousmême parcouru avant de parvenir à des réalisations acceptables par le m u s i c i e n. L'amateur-constructeur d'instruments électroniques verra ainsi ce qu'il ne faut pas faire et, ajoutons-le tout de suite modestement et sincèrement, tout ce qui reste encore à faire dans ce domaine passionnant!

Chaînon A: l'oscillateur

Nous commençons dès maintenant à indiquer quelques solutions électroniques aux problèmes posés dans les tableaux précédents.

Le premier problème qui se pose, dans l'ordre, est le choix d'un oscillateur convenable.

Notre oscillateur (électronique bien entendu) idéal devrait : d'abord couvrir toute la gamme des fréquences audibles de 30 Hz à 10 kHz, soit 8 octaves environ. Mais le clavier couvrant une telle étendue (supposons choisi le clavier du piano, au doigté bien commode 'et surtout universellement répandu) mesurerait 1,30 m de leng... Il faut donc adapter un oscillateur qui permette la transposition. Pratiquement, dans l'Ondioline, le clavier a été fixé à 3 octaves et un dispositif transposeur, d'octave en octave, permet de couvrir les 6 ou 7 octaves les plus « fréquentées » de l'échelle musicale (rien n'empêcherait d'ailleurs, avec cet oscillateur, de monter au-delà ou descendre en de-

Notre oscillateur doit ensuite pouvoir délivrer des tons de deux sortes : soit des tons simples (négatifs de préférence), soit des images à deux alter-

⁽³⁾ L'âme est un petit bâtonnet de faible section qui dans un violon transmet les vibrations de la table au fond.

nances (positives-négatives) par période.

Il doit encore présenter une bonne stabilité en fréquence. Enfin, il faut prévoir la possibilité d'accorder l'instrument par une manœuvre simple, compte tenu par ailleurs de la transposition d'octaves qui, elle, doit toujours rester exacte, quel que soit le ton dans lequel on veut accorder l'instrument.

Le petit tableau de la figure 4 illustre plus clairement ce dernier problème à résoudre: par la manœuvre
d'un commutateur de registre (appelé
« clé d'octaves » dans l'Ondioline), on
doit pouvoir, lorsqu'on appuie par
exemple sur la touche do du milieu
du clavier de 3 octaves, entendre un
do: lorsqu'on est dans la position 1
de la clé d'octaves, entendre un do
à l'octave immédiatement supérieure
(doa) lorsque, appuyant toujours sur
la même touche, on a mis la clé d'octaves dans la position 2, etc.

Mais, d'autre part, en tournant le bouton général d'accord (il s'agit dans la pratique d'un potentiomètre, donc d'une variation continue de fréquen-

ce), il doit être possible de faire glisser la fréquence d'un quart de ton, d'un demi-ton, d'un ton, etc. et plus, vers le haut ou vers le bas de façon par exemple que notre touche do qui, tout à l'heure, nous faisait entendre effectivement un do, nous fasse entendre un si, ou au contraire un do 🖠 ou un ré, etc... et cela quelle que soit la position dans laquelle on met ensuite la clé d'octaves. Si l'on a, à l'aide du bouton d'accord général, amené par exemple notre touche do du milieu du ciavier à procurer en réalité un rédans le 1er registre, nous devrons entendre un ré2 avec la même touche, dans le 2º registre, un réa dans la 3º registre, etc...

Ce sont toutes ces données préalables qui nous ont amené à choisir, et à faire breveter, après quelques modifications pour cette application particulière (4), le multivibrateur à couplage cathodique, dont le schéma de principe est rappelé en figure 5 a.

Fig. 5. — L'oscillateur de l'Ondioline dérive de l'oscillateur à couplage cathodique (a), modifié selon le schéma (b) de façon à permettre la transposition d'octaves sans déréglages. En c, oscillogramme des signaux prélevés sur la connexion commune de cathodes; en d, aspect des signaux prélevés sur l'anode de la triode de droite du schéma b.

Cet oscillateur permet, en effet, une fois modifié selon le schéma général de la figure 5 b, d'obtenir par fractionnement convenable de la résistance R_{e2} en autant de résistances qu'il y a de touches sur le clavier (3 octaves = 36 notes), une variation discontinue de fréquence, de demi-ton en demi-ton.

La résistance R_0 , d'une valeur de 6 900 Ω correspond à la note la plus aiguë, la résistance R_0 , de 53 588 Ω à la note la plus grave.

Chaque touche du clavier, lorsqu'on l'enfonce, met à la masse la résistance qui lui correspond, limitant ainsi à une valeur déterminée la résistance de grille R_{g2}, constituée par cette chaîne de résistances en série. La fréquence d'oscillation est conforme à la valeur ainsi calculée:

$$f = \frac{1}{R_{e2}.C}$$

L'influence de la résistance de cathode (de quelques milliers d'ohms), et de la résistance d'anode R_{*1} de 20 k Ω peut être en effet négligée dans cette formule, par rapport à la résistance de grille $R_{g!}$, qui elle varie de 100 k Ω (note extrême aiguë) à près de 1 M Ω (note la plus grave du clavier).

Par contre, au condensateur C de liaison anode 1 - grille 2, qui sert à commander la transposition d'octaves en octaves, s'ajoutent malheureusement un certain nombre de capacités parasites réparties, qu'il n'est pas possible de réduire à zéro malgré certaines précautions que nous indiquerons plus tard, lors des conseils pratiques pour le montage. Ces capacités réparties, dues au clavier et à différents blindages indispensables, obligent à introduire une correction lors de la transposition d'octaves par la clé d'octaves, transposition qui, sans ces capacités parasites, serait obtenue simplement par doublage de la capacité de liaison C entre anode 1 et grille 2, lorsque l'on désire diviser la fréquence par deux. Les corrections nécessaires sont obtenues en adjoignant une seconde galette au contacteur de clé d'octaves, seconde galette qui décourtcircuite les résistances additionnelles de grille Rvs, Rvs, Rvs, Rvs, au fur et à mesure que l'on ajoute à C_v (registre aigu) les condensateurs Cva, Cva, Cvi, qui chaque fois abaissent la fréquence de l'oscillateur d'une octave. Cv4, Cv3, etc., ainsi que Rv4, Rv3, etc... sont ajustables, de façon à permettre un accord correct en fin de fabrication.

Enfin, le potentiomètre d'accord général P_{nee} permet de monter ou descendre l'accord à volonté, à tout instant, sans avoir à retoucher, évidemment, aux résistances et condensateurs d'ajustage de registres (R_{v1}, 2, 3 et CV₁, 2, 3, 1) qui, eux, sont réglés une fois pour toutes lors de la mise au point. Notre oscillateur, ainsi corrigé, est

⁽⁴⁾ Brevet français n° 974 201 du 17 mars 1941, délivré aux U.S.A. sous le n° 750 000.

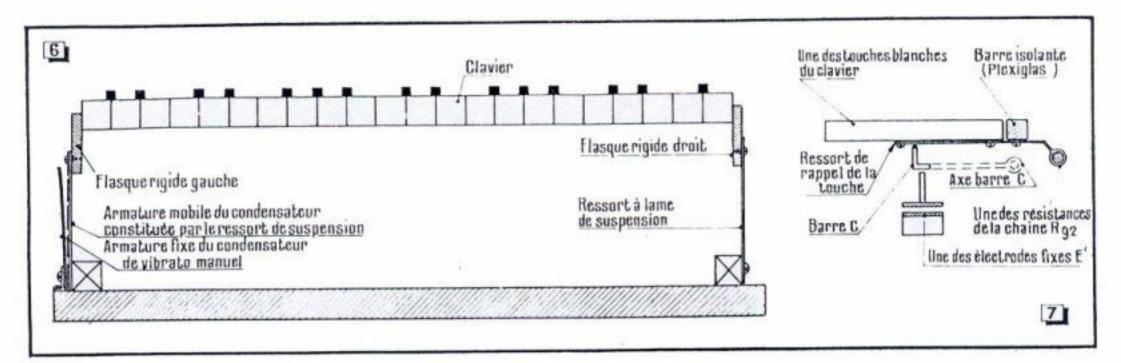


Fig. 6. — La main qui joue peut imprimer au clavier, monté sur lames élastiques, de légères oscillations transversales qui se traduisent en variations de fréquence (vibrato) par l'intermédiaire du condensateur dont une armature est constituée par une des lames.

Fig. 7. — Quelle que soit la touche appuyée, une barre transversale s'abaisse, fermant la chaîne $R_{\rm g}^2$ et enfonçant en même temps la palette mobile P de la « boîte d'attaque progressive », qui donne au son une intensité proportionnelle à la pression sur la touche.

d'un maniement extrêmement pratique, puisqu'il délivre une fréquence stable et d'amplitude suffisamment constante du haut au bas de l'échelle musicale. Les signaux utilisables sont prélevés à volonté en deux points : Bh ou Bh, c'est-à-dire sur la cathode ou sur l'anode, suivant que l'on désire des tops négatifs ou des signaux rectangulaires (fig. 5 c et d), toutes formes d'ondes qu'il est facile de transformer ensuite, par dérivation ou écrêtage (ou les deux) avant de les appliquer aux circuits générateurs de « formants ».

Voyons maintenant quels sont les modes d'action offerts à l'exécutant en cours de jeu, en ce qui concerne cette première partie du montage:

ACTION DISCONTINUE SUR LA FREQUENCE (F $v_{np}1$) (5).

Cette action est obtenue par enfoncement de telle ou telle touche du clavier et également par la manœuvre de la clé d'octaves. (Etendue du clavier : 3 octaves; étendue totale couverte par l'instrument : 6 octaves, ou 7 à 8 octaves selon le nombre de positions supplémentaires du contacteur de clé d'octaves.)

VIBRATO.

Le vibrato, dans l'Ondioline, peut être obtenu de deux façons : manuellement ou automatiquement.

Vibrato manuel. — Le clavier de l'Ondioline a été conçu spécialement de façon à être infiniment plus léger que celui d'un harmonium, d'un piano, ou même d'un simple guide-chant. Le but visé était le suivant : rendre le clavier tellement léger qu'on puisse le suspendre sur ressort, et lui impri-

mer un mouvement latéral en cours de jeu. De cette façon, il devient possible d'obtenir, avec un clavier, le même effet que celui obtenu par le violoniste lorsqu'il fait osciller ses doigts d'avant en arrière et vice-versa sur la corde, autrement dit un effet de vibrato ou variation périodique de la fréquence (6).

C'est également dans ce dessein que nous avons travaillé la transposition d'octaves, qui, en permettant de ramener l'étendue matérielle du clavier de 7 à 3 octaves seulement, nous a permis de réduire encore l'inertie de l'ensemble.

Le clavier de l'Ondioline (fig. 6) est suspendu par des flasques rigides sur deux ressorts à lames soigneusement calibrés pour permettre une oscillation latérale de l'ensemble, sans effort, et avec une inertie pratiquement négligeable pour la main de l'exécutant. Dans son mouvement latéral de va-et-vient, le clavier comprime plus ou moins un condensateur variable à diélectrique mica, dont une des armatures (mobile) est constituée par le ressort même de suspension gauche du clavier. Ce condensateur est connecté en parallèle sur le condensateur C_{v4} de la figure 5 b. Mais, ainsi monté, ce condensateur agirait davantage dans le registre aigu (où seul C est en circuit) que dans les registres graves ou Cva, Cv2, Cv1, sont connectés en parallèles avec lui. Ce défaut est corrigé, dans la pratique, par une 3" galette (commandée par la clé d'octaves, en même temps que les 2 autres galettes) qui introduit, dans les positions 2, 3 et 4, en série avec le condensateur de vibrato, un petit condensateur qui en atténue l'effet. (Pour ne pas nuire à la clarté de ce schéma, ces condensateurs atténuateurs, ainsi que la 3º galette qui les commande, n'ont pas été figurés. Ils le seront dans le schéma général de la page 21.

Le vibrato manuel, bien réglé, et utilisé correctement par l'exécutant, permet des effets très fins, bien supérieurs à tout vibrato automatique. Par ailleurs, en poussant le clavier à droite ou à gauche en cours de jeu, il devient possible de rendre la différence entre une note diézée et une note bémolisée. Nous espérons revenir sur ces considérations, lorsque, dans un autre chapitre, nous examinerons comment jouer convenablement de tous ces paramètres offerts par l'Ondioline à l'exécutant.

Vibrato automatique. — Nous donnerons le montage correspondant à l'obtention d'un tel vibrato, lorsque le schéma des lampes préamplificatrices une fois décrit, nous pourrons montrer en même temps les effets possibles de trémolos (Am de notre tableau I).

ATTAQUE (A vapl du tableau I). Si nous relions les sorties Bh (ou Bh) du schéma de la figure 5 b à l'entrée P.U. d'un amplificateur, nous aurions, lors de l'abaissement ou du lâché d'une touche quelconque du clavier, un horrible claquement, dû tout d'abord à la mise « en » ou « hors » circuit de la grille Rg, claquement caractéristique bien désagréable; et, supposé éliminé ce « floc », nous aurions quand même un passage instantané du silence au son maximum, et inversement, ce que l'oreille n'admet pas et reproche à juste titre aux instruments de musique électronique trop élémentaires.

Plusieurs solutions sont possibles. Contentons-nous ici, puisque nous parlons de l'Ondioline, de décrire celle qui a été adoptée:

⁽⁵⁾ Voir tableau I, page 9, pour explication de cette terminologie.

⁽⁶⁾ L'idée de clavier oscillant revient à M. Maurice Martenot, (brevet n° 666 807, de 1928).

Sous l'ensemble des touches du clavier, nous avons disposé une longue barre très légère, mais également très rigide; cette barre C est articulee autour d'axes fixés sur les flasques droits et gauches de support général de clavier (fig. 7 et 8). Lorsqu'on appuie sur une touche quelconque du clavier, cette barre s'abaisse, parallélement à elle-même, à la façon de la barre d'espacement d'une machine à écrire. Ce dispositif permet donc, quelle que soit la touche enfoncée, de venir comprimer une résistance variable (ou plus exactement un complexe résistance-capacité que nous décrirons en détail plus loin) appelé « boîte d'attaque progressive » dans les dessins (fig. 7 et 8). La barre C est métallique et sert en même temps de mise à la masse de telle ou telle résistance R₅, R₆, R₇, etc. de la chaîne de résistances de Re-

La figure 7 montre comment, en pratique, a été réalisé le clavier. Sur une barre de Plexiglas, les touches noires et blanches sont assemblées par l'intermédiaire de leurs ressorts à lame respectifs (ressorts en bronze phosphoreux). Le ressort à lame de chaque touche sert donc, à la fois, de ressort de rappel de la touche et d'électrode de contact. D'où la nécessité d'isoler soigneusement chaque touche l'une de l'autre et également de la masse; car ici, une perte, même de plusieurs mégohms, vient en parallèle sur l'ensemble des résistances de R_{g2}, et fausse l'accord. Les 36 résistances d'accord Rs à Rm sont des résistances à couche de valeurs préfixées, stabilisées et étalonnées à 0,5 % (7). Elles sont montées en série, en arrière de la barre de Plexiglas et relient chaque lame en bronze phosphoreux à la lame voisine.

Regardant le clavier de dessus (disposé face à l'exécutant prêt à jouer), la résistance R_b est à droite (côté des aiguës) et la résistance R_{to} à gauche, aboutissant à la lamelle de ressort du sol le plus grave.

La barre de contact C est en alliage léger très rigide (duralinox), car elle

doit présenter le moins possible d'inertie. Deux ressorts de rappel (non figurés sur le croquis) la plaquent au repos contre l'ensemble des lamelles de ressort des touches. Le contact « lamelle de touche — barre générale de contact C » ne se fait pas métal contre métal; afin d'éviter les bruits parasites (ennemis des instruments de musique) la partie supérieure de la barre générale de contact C est garnie d'un feutre épais, garni à son tour d'un galon souple tissé en fil d'argent, lequel est relié soigneusement, électriquement parlant, à la barre de contact, elle-même également reliée à la masse.

Ce galon souple, tissé en fil d'argent, se trouve dans le commerce « militaire », sous le nom de galon d'adjudant. Il est parfaitement conducteur de l'électricité et provoque un contact sans crachement. Par contre, malgré sa destination primitive, nous n'avons remarqué aucune amélioration notable du timbre « trompette » de l'Ondioline, depuis que nous en faisons usage...

Obtention de l'attaque progressive

Voyons maintenant dans son ensemble, à la fois mécanique et électronique, comment est réalisé l'effet d'attaque progressive.

Le signal disponible au point B_n (fig. 5 et 8) est appliqué sur la grille de la triode (6 J 5 ou 1/2 12 AU 7) à la fois pour être amplifié et raboté, de façon à éliminer la partie du signal formant base sur le croquis. Ce résultat est aisément obtenu en donnant à la résistance de charge de la triode une très forte valeur (0,5 ou même 1 $M\Omega$) et en ramenant la cathode à une polarisation nulle ou presque. Nous disposons dès lors d'une impulsion du type représenté dans les premières lignes de la figure 3.

(7) La valeur de la résistance R₅ est de 6 900 Ω. Celle correspondant à l'octave au-dessous, R₁₇, devrait être de 6 900 × 2, soit 13 800 Ω. Elle doit en réalité être ramenée à 13 600 Ω, en raison des capacités réparties dues au condensateur parasite formé par l'ensemble du clavier (entre lamelles de contact, fils, résistances d'une part, et les blindages et masses d'autre part). De ce fait, la formule théorique pour trouver chaque valeur des 36 résistances :

et si les autres éléments (Rez, Rez, Rez, Rv4, Cv2, Cv2, etc., R (la résistance de cathode), R et enfin la lampe ellemême présentent des défectuosités, on s'arrêtera à des valeurs de Rs à R40, différentes de la norme. L'on assistera alors à des phénomènes tels que ceuxci : l'instrument sera juste dans un registre, et faux dans un autre! Ce phénomène sera dû, en général, à des « fuites» dans un organe quelconque de l'ensemble oscillateur. Mais lequel incriminer? La lampe, les C.V., les poten-tiomètres mal isolés à la masse, etc.? D'où la nécessité de partir d'éléments parfaitement connus : lampe 12 AU 7 oscillatrice, de préférence sélectionnée, et résistances d'accord Re à Re dont on est certain de la précision et de la qualité, et enfin Cvi, Cvi, Cvi, Cvi, de très bon isolement (prohiber notamment les condensateurs céramiques désastreux dans les oscillateurs B.F. en raison de leurs pertes importantes).

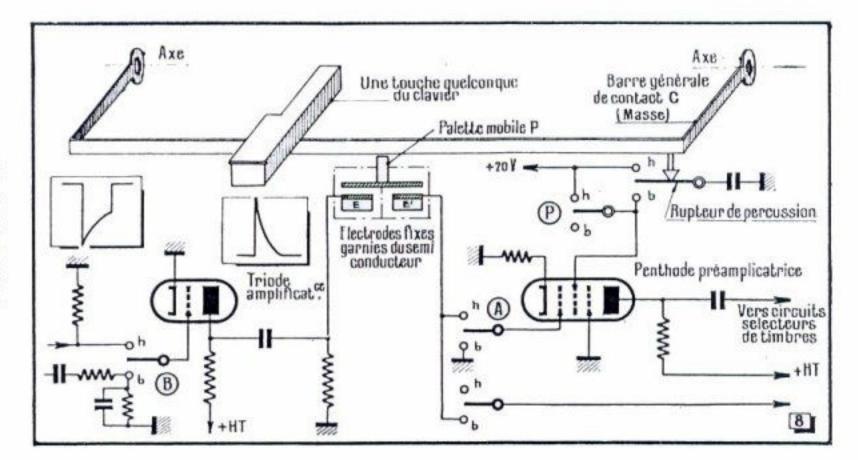
Par contre, si nous désirons un signal à prédominance d'harmoniques impairs (fig. 3, 4 dernières lignes), il nous suffit d'abaisser le levier B du « Bloc de timbres » et le signal disponible au point B, sera bien un signal de ce genre, obtenu par l'ensemble du condensateur et des résistances situés entre l'anode de la 12 AU 7 oscillatrice et le point B_b, et « dérivant » le signal rectangulaire prélevé sur cette anode. Dans ce cas, la triode (1/2 12 AU 7), attaquée par un signal affaibli (rôle de la résistance de 5 à 10 M Ω de la figure 9), n'écrêtera pas notre signal.

L'un ou l'autre de ces signaux — au choix — est amené à l'entrée de la «Boîte d'attaque progressive»; cette boîte, soigneusement blindée, contient une palette métallique mobile P et deux électrodes fixes garnies d'une substance minérale semi-conductrice et relativement élastique (E et E'). Les deux électrodes sont d'ailleurs séparées par une cloison métallique reliée à la masse, afin d'éviter tout rayonnement capacitif direct entre E et E'.

La boîte est fixée sous le clavier, et la palette mobile P reliée mécaniquement à la barre générale de contact C. Lorsque l'on appuie sur une touche quelconque du clavier, la lamelle de ladite touche, reliée à la chaîne des résistances de la grille R_{st} entre en contact avec la barre métallique de contact général C (reliée à la masse); l'oscillateur n'est plus bloqué, et oscille à la fréquence prévue.

L'oscillation prélevée en B (par exemple en B_n si le levier B est relevé) amplifiée et écrêtée, parvient à l'entrée de la boîte d'attaque, sur l'électrode E, et atteint l'électrode E' uniquement par effet capacitif (la palette P est métallique, mais isolée par rapport à la barre générale de contact C, et de plus entièrement enfermée avec E et E' dans le boîtier blindé de la « boîte »).

Le signal disponible au point E' est par conséquent extrêmement faible. Au fur et à mesure que la palette P se rapproche des électrodes E et E', les deux condensateurs en série (et à air) formés par EP et PE, augmentent de valeur, et le signal disponible sur E' fait de même. Lorsque P entre en contact avec E et E' le phénomène se complique, car à EP + PE' se superposent deux résistances en série EP + PE' dont la valeur, tout d'abord infinie, baisse jusqu'à quelques mégohms en fin de compression, et le signal disponible sur E' est maximum. Ce signal attaque la grille de la penthode suivante, et à sa suite les circuits « formants » des sélecteurs de timbre.


Si un tel dispositif en apparence compliqué a été adopté (8), d'ailleurs

R = $\sqrt{2}$, doit être corrigée. Dans la pratique, il s'est avéré préférable de disposer, à la fabrication, de résistances fixes, calculées une fois pour toutes (numérotées de 5 à 40 sur le schéma) d'une précision assez poussée (0,5 %). En effet, si au lieu de 36 résistances on adopte des potentiomètres montés en résistances variables, on sera obligé d'accorder l'instrument note par note,

⁽⁸⁾ Georges Jenny: « Perfectionnement aux instruments de musique électronique ». Brevets français n°s 947 024 et 1 090 491.

Fig. 8. — Détail des circuits de la « boite d'attaque progressive » et des circuits créant l'effet de percussion. Cette partie du schéma s'intercale entre l'oscillateur et les circuits de timbres qui seront décrits ultérieurement.

après des centaines d'essais de tous genres, c'est que le problème est double : il s'agit d'abord de transmettre un signal avec une certaine distorsion d'amplitude, comme cela se passe dans des instruments de musique mécanoacoustique lors de certaines attaques (coup d'archet du violoniste, coup de langue du saxophoniste : se reporter aux paragraphes IV et VIII du tableau II que l'on trouvera page 11). Ensuite, étant donné que, à chaque enfoncement ou lâcher de n'importe quelle touche du clavier, se produit un mouvement correspondant du dispositif d'attaque progressive, ledit dispositif doit résister à des milliers (et même des millions, au bout d'une année de fonctionnement) de manipulations plus ou moins douces ou brutales I'on doit pouvoir frapper comme sur le clavier du piano). Quelle résistance variable, ou dispositif potentiométrique, même bobiné (donc encombrant) résisterait à un tel traitement?

Enfin, étant donné la place où, obligatoirement, un tel dispositif doit être inséré, c'est-à-dire avant les circuits résonnants et amplificateurs, le moindre « crachement » est amplifié... Pas question par conséquent de poudre de graphite comprimée, de potentiomètres à plots, etc.

Nous verrons, dans une étude ultérieure, qu'il y a cependant d'autres moyens. Contentons-nous de celui-ci, qui a fait ses preuves sur l'Ondioline, fonctionnant sur certains instruments depuis plus de 10 ans, à raison de plusieurs heures par jour. Signalons d'ailleurs qu'en cas de nécessité, le semi-conducteur utilisé peut être aisément remplacé.

Les dimensions des électrodes, l'élasticité de l'ensemble et la qualité du semi-conducteur sont critiques, pour l'obtention d'un résultat satisfaisant : légère surtension obtenue sur E, lors d'une frappe vigoureuse, d'où

forme particulière des transitoires Avapl, rappelant d'assez près le « coup d'archet » ou le « coup de langue ». Au contraire, lors d'un enfoncement progressif de la touche par l'exécutant, le son est amené sans à-coup, et dans une progression satisfaisante pour l'oreille.

De même au « lâcher »: les liés, semi-liés, détachés, staccatos, deviennent possibles. Mais cela concerne l'utilisation judicieuse des paramètres, c'est-à-dire une « Méthode d'Ondioline », et nous n'en sommes pas encore là.

Autres modes d'attaque: effets de corde pincée (guitare, clavecin, etc.)

La « boîte d'attaque progressive » est suffisante dans la majorité des cas: reproduction des attaques d'instruments à archet, et d'instruments à vent. Pour obtenir des effets de « corde pincée », un autre dispositif a été ajouté (fig. 8, en haut et à droite). Un contacteur inverseur dit « de percussion » est placé sous la barre de contact C, et est commandé par elle. Lorsque aucune touche n'est enfoncée, la barre est relevée, au repos, et l'inverseur de percussion l'est également. Le condensateur de 0,5 µF est donc chargé sur la H.T. Lorsque l'on enfonce une touche quelconque du clavier, la barre générale de contact C s'abaisse; l'oscillation passe par la boîte d'attaque, en ressort, et attaque la grille de la penthode préamplificatrice. Mais si le levier P a été préalablement abaissé, aucune oscillation n'apparaît sur la plaque puisque l'écran de la penthode n'est pas encore

alimenté. La touche du clavier étant arrivée presque à fond de course, l'inverseur de percussion passe de la position « repos » à la position « travail », et le condensateur de 0,5 µF se décharge dans l'écran de la penthode. Une oscillation apparaît instantanément sur la plaque de la penthode, mais s'évanouit immédiatement, suivant une courbe qui est celle de la décharge du condensateur de 0,5 µF. L'effet obtenu est en tout point semblable à celui d'une corde pincée (beaucoup plus que celui d'une corde frappée par un marteau). La décharge plus ou moins rapide du condensateur évoque des cordes plus ou moins longues ou plus ou moins tendues... Tout cela peut, bien entendu, être rendu réglable en modifiant la valeur de la H.T., de la capacité C. de la résistance de cathode, etc. (9).

Dans l'Ondioline, c'est le contacteur P qui, reliant ou non directement l'écran à la H.T., permet ou annule l'effet de l'inverseur de percussion placé sous le clavier.

NOTA. — Tous les leviers de commande de timbres ont été réunis, dans l'Ondioline, en un bloc de 18 clés, placé dans le haut du meuble, sous le clavier (voir photographies). Ces leviers ont été dénommés, de gauche à droite: A, B, C, D, E, F, G, H, I, J, K, L, M, P, V₁, V₂ W. Nous avons déjà rencontré l'utilisation du levier B (action sur la forme de l'impulsion excitatrice) et du levier P (effet de cordes pincées). Nous examinerons maintenant les fonctions de V₁, V₂ et W (vibratos automatiques).

⁽⁹⁾ Georges Jenny: Brev. français n°s 895 822 du 24 juin 1943.

schéma complet

Avant de quitter les circuits excitateurs pour passer aux circuits résonateurs qui engendrent les formants, nous allons décrire la façon dont sont obtenus les vibratos et les trémoles automatiques, l'obtention du vibrato manuel ayant été précédemment examinée.

Vibratos

Un oscillateur à très basse frequence (3 à 10 Hz) délivre une oscillation qui, bien que non sinusoïdale, module correctement en fréquence notre oscillateur à fréquence musicale. On obtient ainsi un vibrato automatique dont la vitesse peut être modifiée au moyen de deux potentiomètres ajustables, P_v et P_w, disposés à la partie arrière du châssis supérieur et qui sont réglés lors de la mise au point. Ces potentiomètres sont mis en parallèle par le levier W, qui permet donc de disposer d'une vitesse de vibrato assez lente et d'une autre plus rapide. Par convention, on a choisi la position haute de W pour la vitesse lente.

Les leviers V1 et V2 commandent les amplitudes des vibratos, c'est-à-dire le taux d'excursion en fréquence. Ils connectent tout simplement des résistances de valeurs plus ou moins grandes en série entre lampe modulatrice et lampe modulée. Ces résistances sont réglables et constituées en fait par les potentiomètres Pv1 et Pv2; placés également à l'arrière du châssis supérieur.

A la sortie de ces résistances, la tension délivrée par la lampe de vibrato a une allure assez tourmentée. Le filtre constitué par la résistance de 1 M Ω et le condensateur de 100 nF arrondit les angles des impulsions avant de les appliquer aux cathodes du tube 12 AU 7 oscillateur principal. C'est ainsi que la tension fournie par cet étage se trouve légèrement modulée en fréquence.

Trémolos

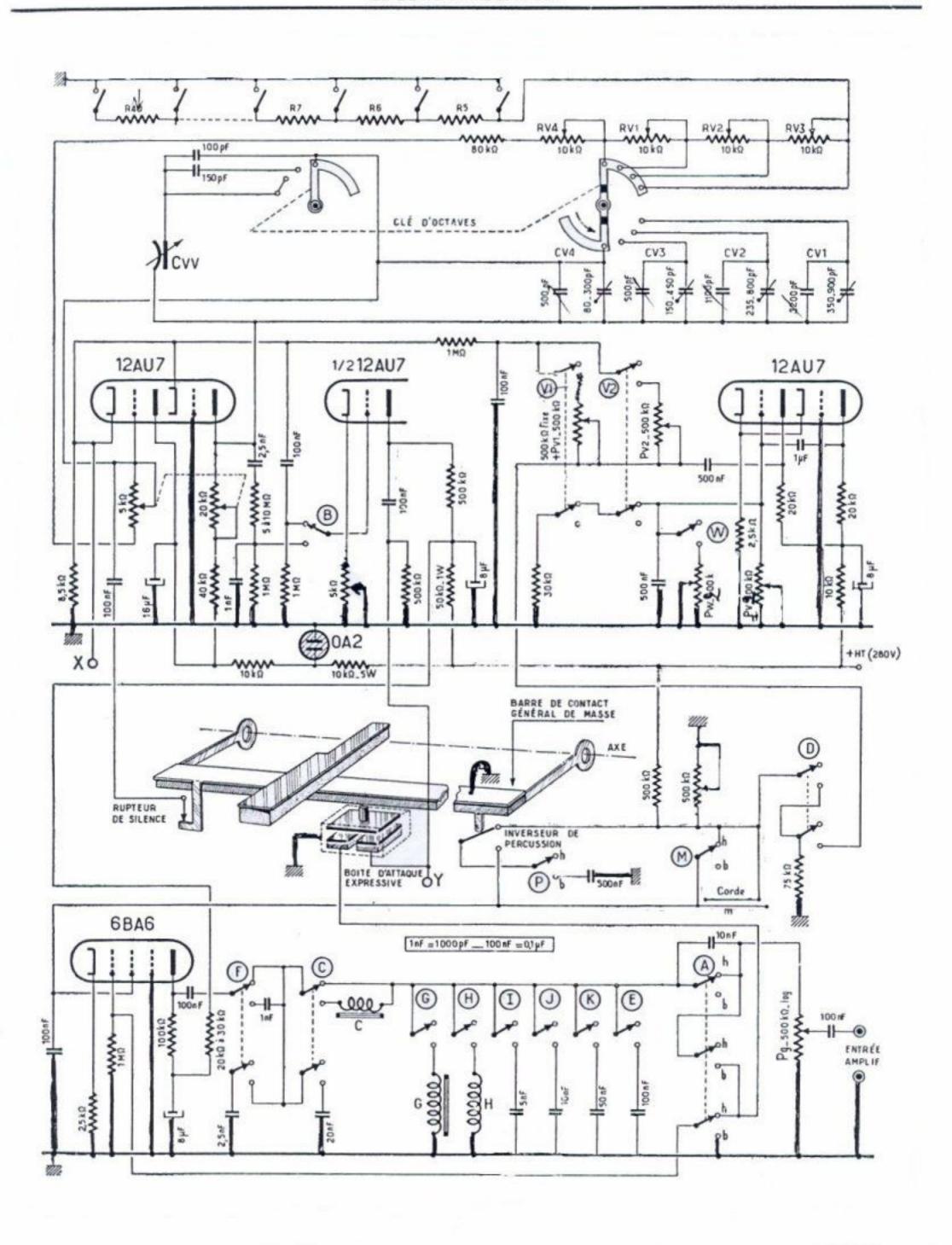
Si nous abaissons le levier correspondant au contacteur D, les impulsions à très basse fréquence provenant du générateur de vibrato sont dirigées vers l'écran de la penthode 6BA6. Cette dernière faisant partie de la chaîne d'amplification du signal issu de l'oscillateur à fréquence musicale, la tension de sortie se trouve hachée au rythme des impulsions. Un effet de mandoline ou de banjo est ainsi obtenu, à condition toutefois qu'on ait accéléré le rythme des oscillations délivrées par la lampe de vibrato, ce qui est obtenu aisément en diminuant encore la valeur de la résistance de grille de cette lampe, connexion effectuée automatiquement par certains contacts « repos » de V1 et V_{v} .

Des effets intermédiaires, véritables trémolos rappelant ceux du bandonéon, pourraient être obtenus en filtrant le signal de vibrato avant de l'appliquer à l'écran de la penthode

amplificatrice.

Pour être complets, signalons qu'une corde métallique, tendue devant le clavier de l'Ondioline, au-dessus d'une barrette également métallique, permet d'obtenir des effets moins automatiques, donc plus « humains » de banjo, guitare, mandoline. L'exécutant, jouant normalement de sa main droite, tapote plus ou moins rapidement avec la gauche sur cette corde et établit ainsi au même rythme un contact métallique, corde-barrette contact agissant comme un interrupteur aux bornes du point M. Celui-ci, comme on le sait, provoque des effets de percussion. Ce même effet peut donc être obtenu au rythme de l'action des doigts sur la corde, d'où des imitations très réalistes, non seulement de guitare ou de banjo, mais aussi de castagnettes, tam-tam, etc... Mais pour bien comprendre comment cette opération apparemment magique est possible, il faut aborder la troisième partie constitutive de l'Ondioline, celle des « résonateurs », ainsi dénommés par analogie avec les enceintes acoustiques qui, dans les instruments à cordes ou à vent, jouent un rôle identique.

Circuits résonnants


Parvenu à ce point précis de notre fil d'Ariane, nous pourrions presque sûrement laisser le lecteur, constructeur éventuel d'une Ondioline, se débrouiller tout seul. Après avoir puisé dans un lot de vieilles « selfs » à fer, de condensateurs de 500 pF à 200 nF, de résistances providentiellement mal marquées, il nous écrira bientôt qu'il a découvert des timbres nouveaux, bien supérieurs à ce qu'il avait pu entendre jusqu'ici provenant d'une Ondioline à l'entracte d'un cinéma ou lors d'une émission de Jean Nohain. Et ce sera peut-être vrai! Car c'est ici que les lettres encore vierges, A, C, E, F, G, H, etc., vont pouvoir entrer en danse dans des combinaisons savantes qui s'inscriront dans la mémoire du musicien amateur à côté des S.N.C.F., R.A.T.P., C.Q.F.D. et autres sigles célèbres...

Si l'on voulait disposer de toutes les nuances possibles de la palette sonore, l'alphabet ne suffirait pas à numéroter les sélecteurs nécessaires. Aussi ne donnerons-nous, comme base de départ, que le schéma complet du dispositif de commande des timbres utilisé dans les Ondiolines de fabrication courante. Notons encore que la pratique montre que la qualité de l'amplificateur et du haut-parleur utilisés en fin de chaîne influe également, et de façon considérable, sur le résultat obtenu. Il faut en conséquence et sans hésitation modifier la valeur, sinon d'un enroulement, du moins du condensateur l'accordant, pour retrouver un timbre suffisamment vraisemblable ou tout simplement agréable.

Nous avons vu que le commutateur B permet de modifier la forme du

Fig. 9 (ci-contre). — Schéma complet du bloc supérieur de l'Ondioline (le bloc inférieur étant constitué par l'amplificateur de puissance, dont le schéma figure page 459). Les résistances Rs à R., normalement fournies avec le clavier, sont des modèles à couche, précision 0,5 %, de valeurs limites égales à 6 900 et 53 588 Ω . Les bobines C, G et H sont des pièces spéciales qui, de même que la boite d'attaque progressive, les condensateurs ajustables de fortes valeurs et les autres pièces particulières, sont fournies sur demande par la Société « La Musique Electronique ». Le texte donne des indications sur la nature du potentiomètre de genouillère P. Tous les autres potentiomètres sont à variation linéaire de résistance. Les bornes x et y sont des points de raccordement ménagés en vue de perfectionnements ultérieurs.

Lire « Boite d'attaque progressive » et non « expressive », comme indiqué par erreur dans le dessin.

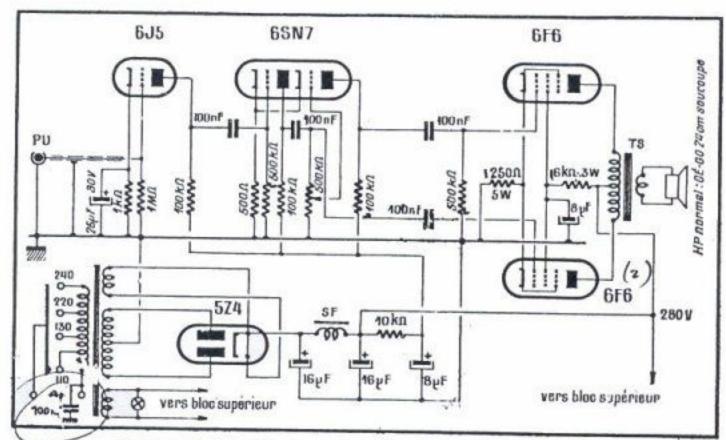


Fig. 10. — C'est cet amplificateur, dont la conception est déjà assez ancienne, qui équipe les Ondiolines de série. Il est tout à fait possible d'utiliser un amplificateur existant, et il est probable que d'excellents résultats seraient obtenus avec les ensembles à « haute fidélité ». Mais il sera sans doute nécessaire de tâtonner un peu quant aux valeurs des éléments du bloc supérieur (schéma de la page 21) nécessaires à l'obtention des différents timbres.

signal excitateur. Il en est de même du levier F, qui, placé avant les circuits résonnants, modifie l'allure du signal par interposition d'un condensateur de petite valeur. Le levier C a un effet différent : au moyen d'un filtre passe-bas, il émousse au contraire l'impulsion avant de l'appliquer aux résonateurs proprement dits, lesquels sont constitués par les bobines G et H et les condensateurs I, J, K, E, qui les accordent sur une fréquence déterminée. Il va de soi que l'amortissement des circuits résonnants a une certaine importance, ce qui signifie que l'on obtiendra des résultats différents - à self-induction égale suivant la section du fer employé, la grandeur de l'entrefer et la section du fil. Sans avoir à triturer la bobine, il est encore possible de jouer sur l'amortissement en connectant en parallèle une résistance.

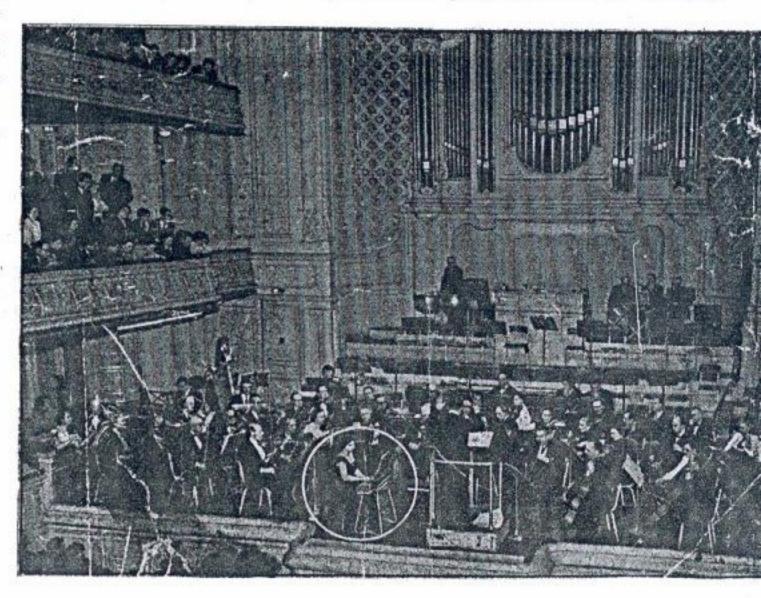
Pour certains instruments, comme le hautbois, l'amortissement gagne à être faible, alors qu'il peut et doit même être assez important pour les cuivres. Le timbre violon est obtenu sans passer par les filtres, mais en abaissant les clés A et F.

Nous tenons à bien faire remarquer ici que le volume du baffle et la nature des matériaux employés influent énormément sur les timbres obtenus; cela est particulièrement vrai pour le violon. Toujours pour le violon, l'effet de sourdine est obtenu en faisant intervenir la bobine H, mais par l'intermédiaire d'un condensateur de 10 nF en série (valeur d'ailleurs assez critique).

Analyser en détail chaque timbre et dire pourquoi tel schéma a été retenu nous entraînerait à transformer cette monographie en une petite Bible, sans intérêt pour qui n'a pas déjà mis la main à la pâte.

Schéma général

Maintenant que nous en avons commenté les principaux éléments, nous pouvons le considérer sans inquiétude, mais en cherchant simplement quelles sont les parties non encore décrites, pour expliquer leur rôle et donner en même temps quelques conseils pratiques pour la construction.


GENOUILLERE D'EXPRESSION.

Dans l'Ondioline, la main droite, normalement chargée du jeu sur le clavier, sélectionne les notes, provoque éventuellement le vibrato en faisant osciller l'ensemble du clavier et détermine enfin en partie le mode d'attaque et l'intensité du jeu, puisque l'amplitude du signal envoyé à l'amplificateur de sortie est proportionnel à la pression du doigt sur la touche. Simultanément, cette amplitude peut être dosée par un potentiomètre Ps connecté aux bornes de sortie du châssis supérieur de l'Ondioline, avant le cordon blindé allant à l'amplificateur.

Pour que ce potentiomètre puisse être actionné commodément, par la main gauche aussi bien que par un genou, il est commandé par une tringle métallique dite genouillère qui lui transmet son mouvement par l'intermédiaire d'un secteur denté et d'un pignon. La course totale du potentiomètre est obtenue pour une rotation de 90° de la genouillère.

En pratique, c'est par une combinaison judicieuse des deux moyens : action progressive ou choc du doigt sur la touche, d'une part, et mouvement imprimé par le genou ou la main gauche au levier de la genouillère, d'autre part, que pourront être obtenus les effets de coups d'archet, ou de coups de langue propres à l'instrument dont on veut évoquer le caractère. Nous ne pouvons entrer ici dans les détails concernant l'exécution musicale proprement dite, mais

Salle Gaveau, Geneviève Robert, soliste de la R.T.F., interprète à l'Ondioline, accompagnée par un grand orchestre symphonique, « Taj-Mahal », concerto de Darius Cittanova, écrit spécialement pour Ondioline et, orchestre.

conseillons vivement aux futurs constructeurs d'une Ondioline de se procurer la méthode écrite pour cet instrument (1).

Le potentiomètre P, doit être un modèle spécial, car il assure un travail extrêmement dur. Un modèle ordinaire tient tout au plus quelques jours et, aussi désagréable que cela soit, il nous faut reconnaître que c'est en vain que nous avons cherché parmi les fabrications françaises un modèle capable de « tenir le coup ». Pour ce qui concerne notre fabrication de série, nous avons dû faire appel à des pièces d'importation, comme le type Allen Brudley (distribué par Rocke International), ou le modèle Vitrohm professionnel, à six frotteurs (vendu, avec des délais de livraisons très variables, par les Ets Frankel).

RUPTEUR DIT « DE SILENCE ». On aperçoit, dans le schéma général, sous la partie gauche de la barre de contact de masse, en plus de la boite d'attaque progressive et de l'inverseur de percussion, un autre contact, fonctionnant en simple rupteur, et que nous avons appelé « rupteur de silence ». Son rôle est le suivant : au repos, la barre générale de contact est plaquée contre l'ensemble des ressorts de touches, et l'oscillateur fonctionne sur la fréquence correspondant à la note la plus aiguë du clavier (sol) Bien que l'électrode mobile de la boîte d'attaque ne soit pas enfoncée, la capacité entre les électrodes fixes n'est pas nulle et une fraction de signai parvient au potentiomètre Pr. Si ce dernier n'est pas au repos, le hautparleur reproduira ce signal qui, bien que très faible, est génant. C'est pourquoi la barre de contact général, par l'intermédiaire de ce « rupteur de silence >, court-circuite au repos l'oscillateur. Ce dernier est débloqué des qu'on appuie, même légèrement, une touche quelconque du clavier.

LEVIER A. — Le commutateur A permet de « sauter » la penthode préamplificatrice 6BA6, placée après la boite d'attaque progressive, lorsqu'on désire éviter la distorsion — utile ou nuisible selon les cas — introduite par cette penthode.

AUTRES LEVIERS. — A titre indicatif, nous donnons ci-contre un extrait de la liste des timbres qu'il est possible d'obtenir sur l'Ondioline, et des leviers qu'il convient d'abaisser pour cela. Le lecteur aura remarqué, tant sur le schéma que dans cette liste, l'absence des leviers L et M, cependant visibles sur certaines photographies. Ces leviers ont été réservés pour des adjonctions ultérieures. Dans le modèle professionnel d'Ondioline, ils ont déjà été utilisés. Mais nous

TABLEAUX III. - LISTE DES TIMBRES

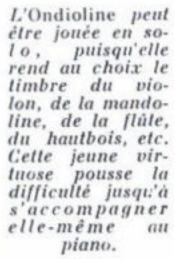
Timbres	Baisser les contacteurs :	Registres :		
Violon Violon sourdine Violoncelle Saxophone alto Saxophone ténor Trompette jazz Trompette de cavalerie Hautbois Cor de chasse Cor d'harmonie Basson Flûte Bugle Petite flûte pipcau Mandoline Mandoline Mandoline avec corde Banjo Banjo avec corde Cornemuse (en tenant la note à	AF OU AFI AFH OU AFHV.W AF OU AFI OU AFV. CGJ SCGIJ CGK GIJ - FHK EGK OU CGKV. M. GCE CK CGK OU EGK GJ OU BGIJ CGJ GJ OU GI DFH OU DH FHM OU HM DFGIJ EGIJM	400 00 00 00 00 00 00 00 00 00 00 00 00		
l'actave en dessous)	BCEV ₂ W, ou ABCIV ₂ W ou BCHKV ₂ W ou BCEHV ₂ W ou BHKV ₂ W ou FGHV ₃ W ou BGHIJV ₂ W ou GIJV ₂ W ou BV ₂ W ou BEHV ₂ W.	3 1 ou 2 3 2 ou 3 2 ou 3 2 ou 3		
Clarinette Bandonéon Guitare Flamenco Guitare douce Guitare hawaienne Clavecin Cithare	B ou BGI A ou M FGHP CGIP GIPV ₂ W FGHP ou HP FGIPV ₁	2 ou 3 3 1 ou 2 1 ou 2 2 ou 3 3		
Castagnettes (en tapant sur la corde sans utiliser le clavier)	BCEFGIJKP CJF ou BGIJK BCE ABCEF	2 -1 1		

REMARQUE TRES IMPORTANTE: L'utilisation correcte de l'Ondioline, surtout en ce qui concerne les attaques (autrement dit la maîtrise du clavier expressif), nécessite de la part de l'exécutant une pratique qui requiert un minimum d'un à deux mois d'études — en dehors de toutes connaissances (pianistiques ou autres) préalables.

Cette pratique s'acquiert à l'aide d'exercices spéciaux indispensables. Faute de comprendre cette nécessité de développer certains réflexes par quelques exercices journaliers, par ailleurs très simples, le musicien possesseur d'une Ondioline n'en tirera jamais que quelques effets du genre « orgue de cinéma » ou « musique électronique », sans commune mesure avec la finesse et la variété d'expression qu'il est possible d'obtenir sur une Ondioline.

Bien utilisée, l'Ondioline justifie la confiance et l'intérêt que lui ont déjà porté, en écrivant pour elle, des maîtres tels que : Arthur Honegger, Landowsky, Delannoy, Darius Milhaud, Georges Auric, J. Kosma, Jean Marion, Guy Bernard de La Pierre, Jean Ledrut, José Padillat, Jean-Jacques Grunenwald, Henry Sauguet. Philippe Parès, pour ne citer que quelques noms.

n'avons pas voulu trop compliquer le schéma général ni cette première description. Telle quelle, l'Ondioline décrite dans ces pages correspond aux modèles en service à La Radiodiffusion Française, à Radio-Luxembourg (Radio-Théâtre et Radio-Circus), ainsi que dans certains conservatoires de


musique, tels ceux de Lyon et de Dakar.

Oscillogrammes

Il serait intéressant de comparer des oscillogrammes des principaux instruments de l'orchestre, de la voix,

⁽¹⁾ Premiers conseils à l'ondioliniste, par G. Jenny. Cette méthode contient quelques exercices très faciles pour l'amateur et sera « illustrée » par un disque microsillon qui montrera toutes les possibilités expressives et de timbre (Editions Le Chant du Monde).

etc., avec ceux procurés par certains timbres de l'Ondioline. Ce travail devrait d'ailleurs être complété par la comparaison des images observées sur l'écran d'un analyseur d'harmoniques, tel que celui du Laboratoire Central des Télécommunications, système Pi-Grâce à l'obligeance de MM. Pimonof et Chavasse, directeur du Centre National d'Etudes des Télécommunications, ce travail a déjà été commencé; nous espérons pouvoir le reprendre un jour et nous proposons de publier éventuellement les résultats dans une étude plus approfondie que celle-ci.

Brevets

Certaines parties de l'Ondioline (oscillateur transpositeur et son dispositif d'accord, dispositifs de percussion, clavier à attaque progressive, etc.) sont couverts par des brevets et ne sauraient être, en conséquence, reproduits à des fins commerciales. Par contre, c'est bien volontiers que nous autorisons le constructeur isolé à s'en inspirer pour son propre compte, exclusivement. Mais nous demanderons instamment aux constructeurs éventuels de ne pas reproduire servilement l'aspect extérieur de l'Ondibline, qui constitue un modèle déposé, de façon que la confusion ne soit jamais possible entre une maquette de construction amateur et le modèle commercial de série.

Ces restrictions faites, nous pensons intéresser les techniciens ondiolonistes en puissance en leur signalant qu'ils pourront trouver dans le commerce (2) toutes les pièces spéciales, clavier y compris, et éventuellement les pièces normales qui leur manqueraient. A partir de cela, chacun aura toute lattitude de faire œuvre originale, en modifiant à son goût, soit la présentation, soit la disposition de certains organes d'expression et de commande. Des timbres nouveaux ou des moyens d'expression originaux pourront être expérimentés.

Quoi qu'il en soit, nous serons heureux si nous avons pu communiquer à d'autres ce « virus » de la musique électronique qui nous tient si bien... Nous sommes persuadés en effet qu'il en est de la musique électronique comme il en était de l'émission et de la réception radio à ses débuts, autrement dit qu'un amateurisme intelligent fera progresser puissamment ce domaine d'activité, qui gagnera finalement lui aussi à un travail d'équipe. La multiplicité des expériences et la confrontation des résultats doivent fatalement contribuer à accélérer le p=ogrès, là comme ailleurs.

Que tous ceux qui disposent de quelques loisirs et que la question intéresse n'hésitent donc pas à entreprendre la construction d'un instrument de musique électronique. A condition qu'ils aient un peu d'oreille ou qu'un ami musicien les assiste au départ, ils connaîtront à leur tour le plaisir d'avoir réalisé eux-mêmes leur instrument de musique et la joie de l'exécution musicale personnelle.

L'Ondioline est utilisée aussi bien pour la musique de variété que dans certaines formations classiques. Il existe même un trio d'Ondioline, le trio d'ondes de Paris, composé de Mme Geneviève Robert et de MM. Cittanova et Mérer, qui se produit notamment à La Radiodiffusion Française et y interprète des œuvres modernes, écrites spécialement pour les instruments de musique électronique, ou très ancienne : Bach, Vivaldi, etc... C'est en effet un des aspects piquants de la lutherie électronique, de permettre la résurrection des timbres d'instruments anciens, pratiquement abandonnés aujourd'hui. Même si les sonorités ainsi reconstituées sont légèrement différentes de celles des instruments de l'époque, personne ici ne saurait crier au sacrilège, car l'on joue Bach aujourd'hui sur des violons, des flûtes, des trompettes, qui différent sensiblement des instruments du temps. Pensons simplement que le la du diapason, aujourd'hui à 435 Hz, a considérablement monté au cours des siècles, et que la «Suite en Ré» de Bach, par exemple, se trouve haussée de plus d'un ton par rapport à sa tonalité d'origine. De toute façon, s'il revenait, Bach ne reconnaîtrait plus « ses enfants »...

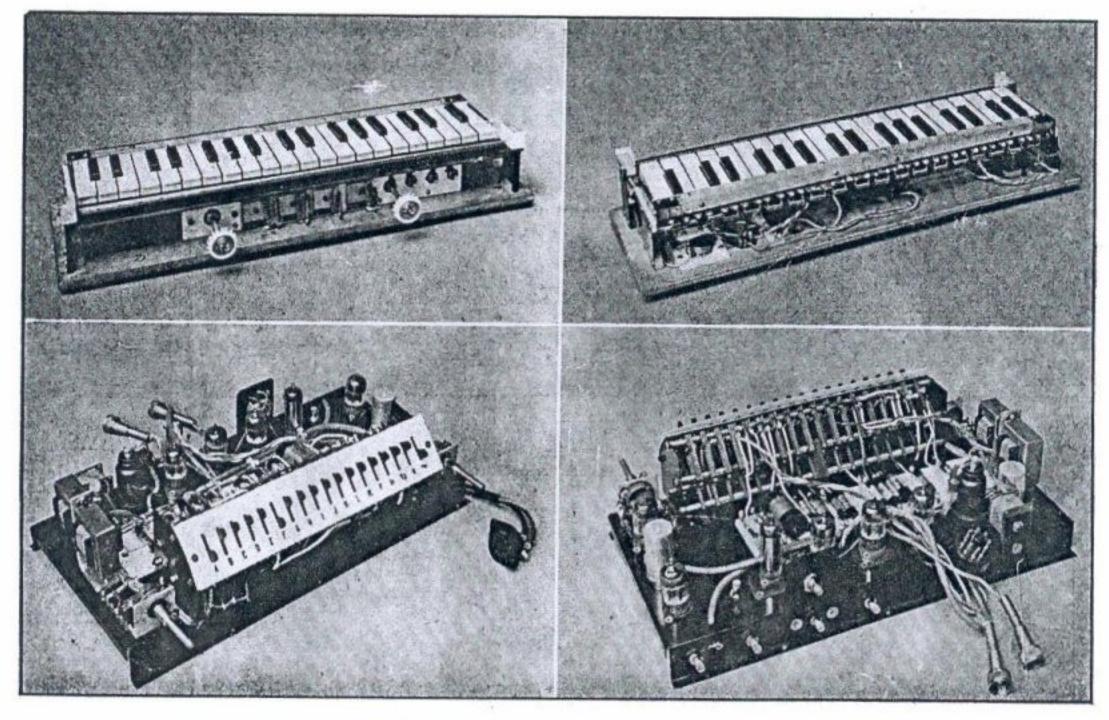
Signalons pour terminer qu'il existe déjà un club groupant les amateurs de musique électronique: l'Association des Amis de la Musique Electronique dont le but est de favoriser le développement de cette nouvelle branche de l'art (et pour nous de la technique...). Tous ceux que la question passionne sont invités à se joindre à ce club (3). Ils pourront ainsi, sur le plan local et même sur le plan régional, bavarder entre connaisseurs et, certainement, contribuer efficacement à ce progrès dont nous parlions tout à l'heure.

Il nous reste maintenant à donner quelques conseils pour la construction pratique et, surtout, à préciser la méthode à suivre pour la mise au point.

⁽²⁾ Etablissements Ondioline, 190, faubourg Saint-Denis, Paris (10*). Tél. BOT. 74-03.

⁽³⁾ Pour tous renseignements à ce sujet, écrire (avec timbre pour réponse, s.v.p. à : M. Georges Jenny, Chemin du Paradis, près Bar-sur-Loup (A.-M.).

Conseils pour le montage


Précautions générales

Avant de décrire la réalisation pratique (assemblage, câblage, mise au point) de l'Ondioline, nous insisterons tout d'abord sur quelques principes généraux à ne pas perdre de vue lors de la construction.

Les points à surveiller surtout sont la qualité des isolants et la disposition des organes qui devra être faite de telle sorte que les capacités parasites soient tenues aussi faibles que possible pour les circuits d'oscillation et qu'il n'existe pratiquement pas d'inductions entre certains étages, ni d'interactions entre certains circuits.

Les circuits du tube 12 AU 7, oscillateur à fréquence musicale, doivent être particulièrement soignés quant à l'isolement. Toute perte, tout fuite même faible en B.F. ou en courant continu a ici une conséquence catastrophique (prohiber notamment les condensateurs céramique, pas toujours satisfaisants en B.F.) : l'instrument est faux dans la partie grave du clavier et, de plus, inégalement selon les registres. Prendre pour le tube 12 AU 7 un support noval en bakélite H.F. de très bonne qualité; de même que pour les condensateurs ajustables d'accord Cvi, e, a, i, choisir le mica comme diélectrique des condensateurs d'appoint.

Employer du Plexiglas pour la réglette supportant les 36 résistances d'accord, et se méfier de certaines bakélites, même dénommées H.F. Toute résistance inférieure à 5 000 MΩ insérée entre grille 1 et plaque 2 de la première 12 AU 7, ou encore entre plaque 2 et masse, désaccorde l'instrument, surtout du côté des notes graves. Par contre, une capacité parasite excessive entre grille 1 et masse resserre l'accord du côté des aiguës. Les résistances ajustables Rvi, s, a, 4 ont d'ailleurs pour but de remédier à ce dernier défaut. Mais une capacité parasite exagérée rendrait tout rattrapage impossible. C'est pourquoi

En haut : Le clavier de l'Ondioline. Les deux boutons correspondent à la commande de transposition et à l'accord. On distingue sur la vue arrière la règle en Plexiglas supportant les ressorts de touches et, soudées entre lames consécutives, les résistances formant la chaîne R_{zz}. — En bas : Vues avant et arrière du bloc électronique montrant en particulier les sélecteurs de timbres et d'effets spéciaux. Des précisions concernant la disposition des organes, le montage, le câblage et le réglage de l'Ondioline seront fournies dans la suite de cette étude.

l'emploi de fil blindé dans ces parties de l'Ondichne doit être prohibé. Le câble conxial même est trop capacitif. Les seuls circuits qu'il convient de blinder sont ceux que nous citerons plus loin.

Cette première lampe 12 AU 7 doit d'ailleurs être sélectionnée, c'est-àdire qu'il faut choisir des types qui ne s'écartent pas trop des caractéristiques indiquées par le constructeur, surtout en ce qui concerne la résistance interne et l'isolement entre électrodes.

Le panneau supportant les éléments concernant l'accord et la transposition (C_{v1}, 2, 3, 4; R_{v1}, 2, 2, 4, potentiomètre double d'accord, contacteur trois galettes de la clé d'octaves) doit être taillé dans un excellent isolant, Plexiglas par exemple. Le contacteur à galettes de la clé d'octaves doit également présenter un isolement parfait entre les grains de contact. Nous recommandons le modèle en stéatite siliconée de Chambaut. Le circuit des rupteurs de silence doit être également parfaitement isolé.

En dehors de ces précautions, disposer les organes du circuit oscillateur de la façon qui paraîtra, au point de vue fonctionnel, le plus logique. Ne pas chercher à réduire les valeurs, parfois inutilement élevées, en apparence, des condensateurs de découplage de l'alimentation.

Différents blocs de l'Ondioline

Pour la commodité de la description, nous désignerons le bloc clavier par la lettre A; le bloc électronique, comprenant les oscillateurs, les circuits préamplificateurs, les sélecteurs de timbres, etc. par la lettre B; l'amplificateur enfin, par la lettre C. En ce qui concerne ce dernier, les commentaires sont inutiles, et nous dirons simplement qu'il est parfaitement possible de le remplacer par n'importe quel bon push-pull dont la revue Toute la Radio a déjà publié maints schémas. En éliminer toutefois tous les circuits de correction ou de cortre-réaction (1).

Bloc clavier

Ce bloc A est le plus difficile à réaliser par l'amateur. Si ce dernier est très averti, il ne lui est pas défendu de tenter l'expérience et, dans ce cas, réglage et mise au point seront une simple question de réflexion et de logique.

(1) On peut ici n'être pas d'accord avec l'auteur. En effet, le rôle d'un amplificateur de puissance est, en principe, de transformer en courants forts des tensions faibles fournies par les étages précédents, en en modifiant le moins possible la forme. Toutefois, il est très probable que l'amplificateur de puissance, le transformateur de sortie, le haut-parleur et le coffret des Ondiolines de série jouent un grand rôle dans la qualité des timbres obtenus. C'est pourquoi nous tenons à prévenir les lecteurs qui voudraient utiliser un amplificateur existant qu'ils auront vraisemblablement à modifier expérimentalement certaines des valeurs des éléments responsables des timbres. Dans ces conditions, nous conseillons de conserver à l'amplificateur de puissance sa chaine de contre-réaction, ce qui ne pourra que favoriser la fidélité des reproductions obtenues, étant donné l'ac-tion bien connue de la contre-réaction sur l'amortissement de la bobine mobile. Mais peut-être sera-t-il nécessaire de prévoir alors entre Ondioline et amplificateur un étage extérieur à la boucle de contre-réaction, étage dans lequel apparaîtraient les distorsions qui semblent nécessaires à la reproduction de certains timbres? On voit que les techniciens désireux de fouiller la question ne manqueront pas de matière à expérimentation! — (Note de l'Editeur.)

Pour la grande masse des constructeurs isolés, nous avons hésité à rédiger une méthode complète de mis au point qui occuperait plusieurs pages de ce fascicule. En toute sincérit nous pensons que le mieux est que le Société à laquelle nous avons confila vente des pièces détachées de l'Ontrolle dioline se charge du montage et de la mise au point de cette partie vrait ment délicate.

Nous allons cependant la décrir rapidement. Ce bloc comprend le cla vier proprement dit, avec ses résist tances d'accord pour chaque note e la barre générale de contact. Le clavier est monté sur des lames qui lu permettent d'osciller latéralementcomme nous l'avons vu dans les pages précédentes. Sous la barre, or trouve les contacts de percussion, de silence, et la boîte d'attaque progressive. Des ouvertures ménagées sous la platine supportant ce bloc-clavier permettent à l'usager d'accéder aux vis de réglage de chacun de ces éléments, qui n'ont d'ailleurs à être retouchés qu'accidentellement, le réglage étant fait en principe une fois pour toutes par le constructeur, en liaison avec un châssis B étalon, Le condensateur de vibrato manuel, disposé à gauche du clavier, est également réglé une fois pour toutes.

A l'avant du clavier est tendue la corde métallique servant aux effets de banjo, de tam-tam, de castagnettes, etc. Et sous la planchette de bakélite noire qui supporte cette corde sont disposés les organes d'accord et de transposition, montés sur une plaquette isolante. Le clavier étant vu de face, on trouve, de gauche à droite : le contacteur de clé d'octaves, les quatre condensateurs ajustables de pré-accord Cv1, 2, 3, 4, le potentiomètre double d'accord général et les trois potentiomètres de rattrapage des aiguës Rv1, 2, 3. Les seuls axes qui dépassent d'ailleurs sont ceux de la clé

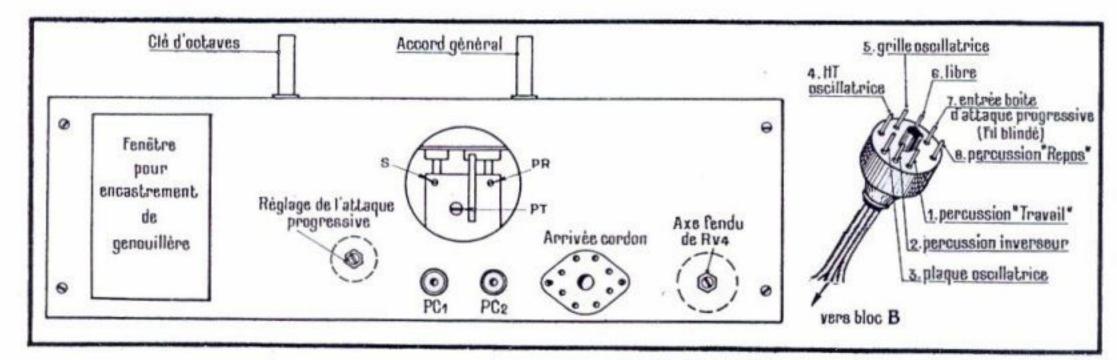


Fig. 11. — Le bloc A, ou bloc clavier, vu de dessous. Le code employé est le suivant : PC₁: prise coaxiale de sortie de la boite d'attaque progressive; PC₂: prise coaxiale pour entrée éventuelle vers le potentiomètre de genouillère; S: vis de réglage du rupteur de silence; PR: vis de réglage du contact « repos » de percussion; PT: vis de réglage du contact « travail » de percussion. A droite, répartition à réaliser des fils provenant du bloc B (bloc électronique) sur le bouchon octal se raccordant au support correspondant du bloc A.

d'actaves et du potentiomètre d'accord

général.

Toutes les connexions aboutissent à l'arrière du bloc-clavier à un système de raccordement par prises composé de deux fiches coaxiales mâles et d'un support 8 broches en bakélite moulée. Les organes complémentaires appartiennent au bloc B. Il y a lieu de veiller à la bonne qualité du bouchon 8 broches (bakélite moulée de la M.F.Œ.M.) puisque des connexions de grilles et de plaques s'y raccordent, en provenance de l'oscillateur.

Le câblage du bloc A est effectué de façon que toute fuite de signal soit interdite au sortir de la boîte d'attaque progressive. En amont de cette dernière, des fuites peuvent être tolérées, et c'est heureux car il faut avant tout éviter d'augmenter les capacités parasites pour tout ce qui concerne l'étage oscillateur. Après la sortie de la boite d'attaque progressive, le signal ne retournera p us dans le blocclavier, sauf vers le potentiomètre de genouillère, si toutefois le constructeur a décidé d'installer ce potentiomètre dans le bloc A, ce qui n'a rien d'obligatoire. L'entrée de ce potentiomètre est reliée à une prise coaxiale et on aura bien soin d'isoler électrostatiquement par des blindages sans solution de continuité les circuits entrée genouillère, le potentiomètre luimême, et la sortie vers la partie pickup de l'amplificateur B.F.

Bloc électronique

Ici, une grande latitude est laissée au constructeur amateur, tant du point de vue disposition des organes que dans le choix de certaines pièces, lampes y compris (sauf en ce qui concerne l'oscillatrice, qui doit obligatoirement être une 12 AU 7).

D'une façon générale, il y a intérêt à disposer ce bloc B le plus près possible du bloc-clavier, afin d'éviter les inductions et capacités parasites au long des câbles de grille et de plaque de la 12 AU 7. Une longueur de 30 cm est acceptable pour chacun de ces câbles, entre le support du tube et le bouchon octal de raccordement au clavier. La disposition des tubes et celle des contacteurs sur le châssis B pourra donc être « repensée », compte tenu toutefois de cette limitation concernant la longueur des câbles et du fait que toute proximité doit être évitée entre les organes situés en amont et ceux situés en aval - électriquement parlant - de la boîte d'attaque progressive.

Comment disposer les leviers de timbres? Dans la forme actuelle, ils se succèdent de gauche à droite, dans l'ordre alphabétique. Au cours des dix dernières années, certains ont été ajoutés, supprimés, permutés, ce qui explique que leur disposition dans l'instrument ne coïncide pas avec la

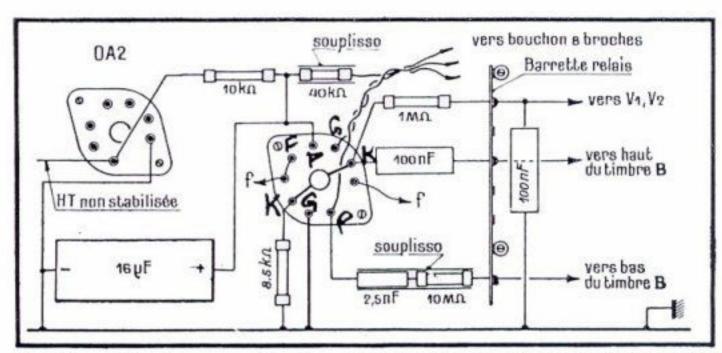


Fig. 12. — L'auteur conseille de suivre ce plan de càblage pour la section oscillatrice à fréquence musicale. Les connexions « sensibles » aux fuites et pertes B.F. évitent les cosses de la barrette-relais, dont l'isolement n'est pas toujours parfait, ou n'y aboutissent qu'après des résistances de fortes valeurs.

disposition qui paraitrait logique au vu du schéma. Le constructeur est prisonnier du passé, compositeurs et instrumentistes s'opposant à ce que de nouvelles appellations soient employées, ce qui obligerait à reprendre toutes les partitions annotées et à acquérir de nouvelles habitudes... Il est bien certain que cet impératif concernant les emplacements ne se présente pas pour le constructeur néophyte, qui aura donc là l'occasion de faire preuve d'indépendance et d'imagination. Une bonne précaution consiste à prévoir dès le départ l'emplacement de leviers supplémentaires. car rien n'est plus passionnant que la recherche de timbres nouveaux.

Rappelons à l'occasion la philosophie de notre codification : les leviers A, B, C et F déterminent, nous l'avons vu, la forme du signal excitateur, avant que ce dernier attaque les circuits générateurs de formants. Par conséquent, tout nouveau levier qui actionne un dispositif modifiant la forme du signal avant application aux circuits de formant G, H, I, J, K, E, devra être répertorié selon un code dérivant des lettres A. B. C. F. Exemple: A1, A2, etc. pour des impulsions du genre de A; B2, B3, ... pour des signaux proches des rectangulaires; C1, C2, etc. pour des signaux excitateurs d'allure sinusoïdale, etc. Côté formants, même conventions, des bobinages supplémentaires pouvant être mis en service par des clés G, G ou H1, H2, selon l'effet obtenu. Les manettes relatives à des condensateurs additionnels seront baptisées à partir des lettres I, J, K, E. En adoptant cette normalisation qui, si imparfaite qu'elle soit, a quand même le mérite d'exister et d'être appliquée dans les appareils de série, vous rendrez plus facile à un autre ondioliniste la compréhension de l'instrument que vous aurez construit.

Parlons maintenant de la partie oscillateur de notre bloc B. Nous pensons utile d'en reproduire le plan de cáblage conseillé. En suivant ce plan, le lecteur est assuré de n'avoir aucune surprise quant à l'accord et à la transposition. On remarquera, en effet, que les connexions (fil souple bien isolé) de grille 1 et plaque 2 partent directement vers le bouchon octal, sans passer par la barrette-relais, scurce de fuites possibles. De la plaque 2 partent également, soudés bout à bout sous un soupliso, le condensateur, papier ou mica, de 2,5 nF, et la résistance de 10 M Ω . Pour éclaircir le dessin, on n'y a pas représenté les éléments de découplage du timbre B.

Ouvrons une petite parenthèse à propos de l'authentique contacteur A. Si l'on éprouve des difficultés pour se procurer le contacteur à deux directions et trois circuits nécessaires en ce point, le scinder en deux ou trois éléments à commande individuelle : on disposera ainsi de combinaisons supplémentaires.

Un mot encore à propos de l'approvisionnement possible en « contacteurs timbres ». Des raisons à la fois financières (prix de revient trop élevé) et morales (les Ondiolines « privées » risqueraient de ressembler trop aux Ondiolines « commerce »), font qu'il sera impossible à la Société La Musique Electronique de vendre en pièces détachées les contacteurs actuellement employés pour la série. Mais les pièces requises n'ont pas besoin de présenter des vertus extraordinaires. Le plus difficile sera de découvrir des pièces au contact franc, mais non bruyant. Cela dit, tout contacteur genre radio de bonne qualité, à deux positions, fera fort bien l'affaire, de même que conviendraient également les claviers à poussoirs, actuellement en vogue, torturés au besoin pour être rendus aussi silencieux que possible. Une autre solution consiste à prendre des galettes séparées pour contacteurs rotatifs classiques et à les munir d'un petit

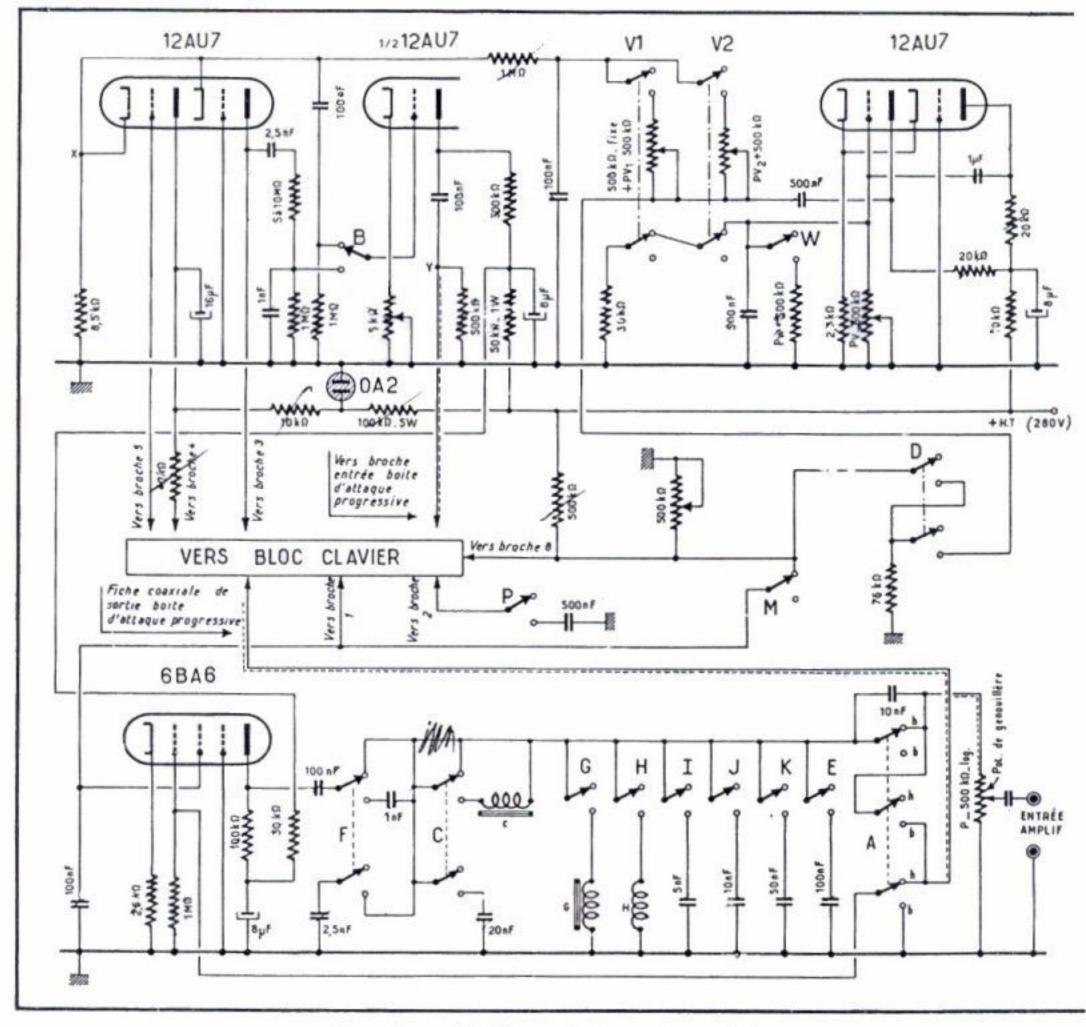


Fig. 13 — SCHÉMA COMPLET DU BLOC B

levier solidaire du rotor dans le plan de la galette. On pourra alors fixer l'ensemble des galettes par tiges filetées et entretoises

Signalons enfin le petit contacteur de Jeanrenaud, simple, robuste et peu coûteux, ainsi qu'un modèle découvert au « Pigeon Voyageur », probablement originaire de chez Becuwe et ayant l'avantage d'être déjà muni d'un levier. Leurs encliquetages sont cependant trop brusques et il sera bon, à l'aide d'une pince à bec long, de cambrer légèrement la lame ressort, afin d'en rendre la manœuvre très douce.

Câblage des contacteurs

Seuls les fils aboutissant aux contacts de A devront être blindés ainsi que ceux parvenant au potentiomètre de genouillère ou en partant. Les connexions allant de la cathode 12 AU 7 oscillatrice à fréquence musicale, à la grille de la demi-12 AU 7 à l'aide du contacteur B, doivent être aussi courtes que possible et de toute façon ne pas longer à moins de 3 cm les connexions allant vers A, C et les autres timbres F à E. Mais il n'est pas possible de blinder cette connexion de cathode à grille, car la légère capacité ainsi introduite altérerait la qualité de la transposition.

Il sera bon, si on le peut, de blinder par deux petits cloisements en simple clinquant, le contacteur de timbre B, afin d'assurer son étanchéité statique par rapport aux contacteurs A et C.

La disposition des bobines C, G, H n'est pas critique. Le mieux est évidemment, si cela est possible, de les disposer près de leurs contacteurs respectifs. Cependant, si l'on prévoyait une alimentation séparée pour ce bloc B, il faudrait songer aux induc-

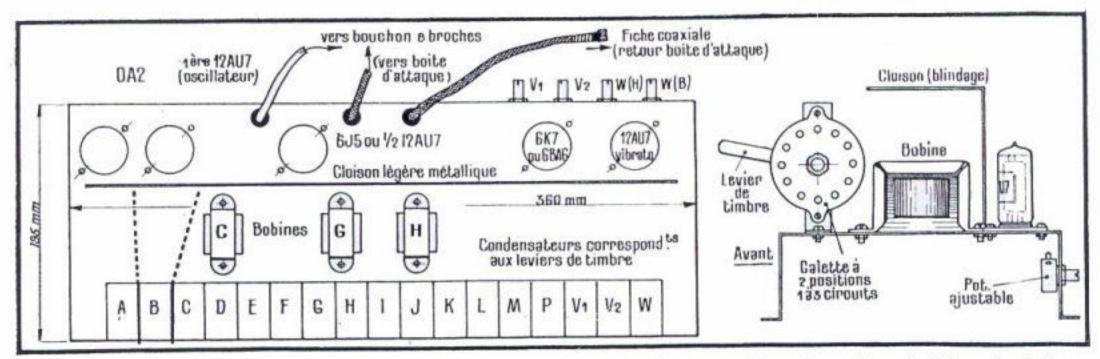
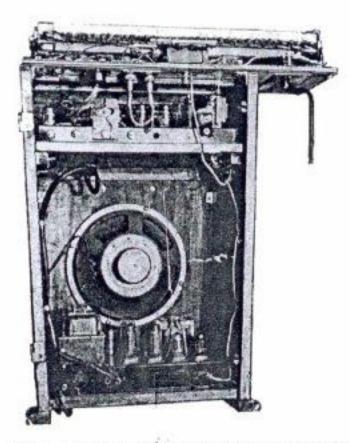


Fig. 14. — Disposition du bloc B, avec indication des connexions de raccordement au bloc A (bloc clavier) au moyen du bouchon octal d'une part (dont 7 broches sont utilisées) et d'une fiche coaxiale P.C.I., d'autre part (pour la sortie « boite progressive »). La seconde fiche coaxiale du bloc A, non représentée ici, mais seulement figure 11, sert à amener l'entrée blindée du potentiomètre genouillère, la sortie de ce potentiomètre s'effectuant par cordon blindé muni de fiches bananes, à connecter sur l'amplificateur B.F.

tions à 50 Hz du secteur d'alimentanance du transformateur d'alimentation et qui pourraient, concentrées par
les noyaux et bobines C, G et H, moduler de façon désastreuse les sons
émis par l'Ondioline, ou encore s'y incorporer sous forme d'un ronflement
désagréable. Mieux vaudrait alors
éloigner les bobines du transformateur et chercher expérimentalement
leur orientation optimum. En cas d'ennuis de ce côté, blinder les connexions
de ces bobines et, le cas échéant, les
bobines elles-mêmes.


Lampes

Répétons qu'il vaut mieux conserver une 12 AU 7 pour l'oscillatrice à fréquence musicale. L'oscillatrice du vibrato pourrait être une 6 SN 7, si l'on n'a pas sous la main de lampes Noval ou miniature. La demi-12 AU 7 de liaison peut être remplacée par une demi-6 SN 7 ou une 6 J 5. La 6 BA 6 peut s'appeler 6 SK 7 ou même 6 J 7. La régulatrice de tension 0 A 2 n'est pas indispensable et nous ne l'avons mise que récemment dans les Ondiolines du commerce. La stabilité de l'accord sera certes un peu moindre, mais cependant supérieure à celle d'un violon et toujours susceptible d'être rattrapée par le bouton d'accord général. Disons que la 0 A 2 s'impose si le secteur subit des variations rapides de tension.

Disposition des organes sur le bloc B

La figure 14 indique, à titre d'exemple, une disposition assez rationnelle des pièces sur le châssis B, disposition qui tient compte à la fois de l'état actuel de l'Ondioline et de perfectionnements éventuels.

Le support de la 12 AU 7 oscillatrice à fréquence musicale a été disposé presque en regard de la commande de timbre B. Les connexions s'y rapportant n'interfèrent donc pas avec celles de C, F, G, etc. Le retour à la grille de la demi-12 AU 7 atteindra cette lampe sans cloisonnement qui, autrement, serait nécessaire pour éviter les rayonnements vers C. Le retour de la boite progressive qui, venant du clavier, doit aboutir au timbre A, sera fait en fil blindé, directement de la fiche coaxiale femelle jusqu'à A, sans cosse relais, évidemment, en cours de route. De là, fil blindé vers grille 6 J 7 ou 6 BA 6. De la plaque 6 J 7, retour par fil blindé jusqu'au timbre F, ensuite, câblage banal des circuits de timbres proprement dits, le blindage n'étant pas nécessaire. Un simple cloisonnement léger, en clinquant, par exemple, élevé à hauteur de l'organe le plus haut (contacteur ou 6 J 7) assurera l'étanchéité stati-

Vue arrière d'une Ondioline réalisée industriellement.

que nécessaire entre timbre et fil souple allant par le bouchon octal, vers le bloc A. Ce cloisonnement peut se révéler utile également si, par la suite, on ajoute des circuits complémentaires.

Les lampes ont été alignées à l'arrière, sur un rang, afin d'être toutes facilement accessibles par simple ouverture d'un panneau au fond de l'instrument. Pour la même raison, les potentiomètres de réglage des vibrato auront intérêt à être disposés sur le repli arrière du châssis (fig. 14 à droite).

Les condensateurs et résistances de vibrato pourront être disposés sous le châssis, à proximité de la 12 AU 7 correspondante. La longueur des connexions vers V₁, V₂, W est sans importance, de même que celle des fils allant vers M, P et D.

Le levier L est actuellement libre. Si l'on prévoit des contacteurs supplémentaires, les répartir de préférence ainsi:

1º Entre C et D (modification de signaux excitateurs);

2° Entre D et E (modifications du rythme mandoline);

3º Après G et H (adjonction d'autres bobines);

4° Après K (adjonction d'autres condensateurs et résistances);

5° Après M et P (modifications à l'effet guitare : attaques plus douces, évanouissement plus bref ou plus long, etc.).

Mais est-ce bien raisonnable de notre part de parler timbres complémentaires, alors qu'il s'agit déjà d'obtenir tous les timbres que permet l'Ondioline actuelle?

Arrêtons-nous donc ici. Nous pensons qu'ainsi mis sur la voie, le constructeur-amateur doit réussir à coup sûr, surtout lorsqu'il aura pris connaissance du prochain et dernier chapitre, qui sera consacré à la mise au point.

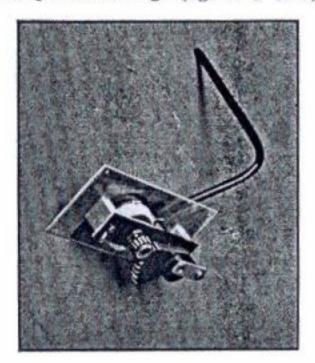
Mise au point

Vérification des tensions

Nous avons donné, page 21, le schéma général de l'Ondioline. Suivant l'alimentation utilisée, on pourra tolérer d'assez substantielles variations autour des tensions moyennes citées ci-après, qui sont surtout données à titre d'indication.

La H.T., après action du tube 0 A.2, doit être de l'ordre de 150 V; le tube doit évidemment être illuminé. S'il n'en est rien, vérifier que la tension en amont de la résistance de 10 kΩ, 5 W est supérieure à 185 V lorsqu'on retire le tube régulateur 0 A.2. Cette résistance limite le courant dans le tube à un maximum de 30 mA. Ne pas céder à la tentation de supprimer l'autre résistance de 10 kΩ placée en aval de la 0 A.2, sinon il y aura risque de déclenchement d'oscillations de relaxation entre le tube et le condensateur de 16 μF.

La tension cathodique de la 12 AU 7 est de 10 a 15 V suivant que la lampe oscille ou non. La tension cathodique de la 6 K 7 (ou 6 BA 6) est mesurée avec les sélecteurs M et P relevés II en est de même pour la tension d'écran, qui sera ajustée par action sur la branche variable de 500 kΩ du pont alimentant cette grille. Si l'on abaisse P, le pont ne débite plus et la tension remonte à 40 V environ.


Contrôle dynamique étage par étage

La mise au point d'une Ondioline nécessite la mise en œuvre simultanée de l'oreille et d'un voltmètre électronique, aidés, si possible, par un oscilloscope. Ecouter en même temps que l'on contrôle visuellement, mais écouter sans trop se préoccuper au départ de ce que l'on entend...

Le voltmètre électronique nous servira à mesurer les tensions B.F. en différents points. Sonder d'abord la grille de la 6 J 5 (ou demi-12 AU 7): mettre la clé d'octaves sur le registre le plus aigu (IV), le potentiomètre d'accord général à mi-course et tous les leviers de timbres en l'air. Appuyer sur la touche correspondant au do du milieu du clavier. On doit lire 5 V efficaces environ. Abaisser le levier B: la tension doit tomber à quelque chose comme 0,2 V. Si cette tension est trop faible, ramener la résistance de 10 MΩ à 7 ou même 5 MΩ.

mais pas moins. S'assurer que la tension de polarisation de cette 6 J 5 est ajustée au mieux.

Les possesseurs d'un oscilloscope pourront parfaire cette mise au point de la façon suivante : observer l'image sur la plaque de la triode, ou, ce qui revient au même, après le 100 nF de la liaison plaque 6 J 5 — entrée boîte d'attaque progressive. L'image observée, avec B relevé, devra être exempte de bossage (fig. 15 a et b),

Commande du potentiomètre de genouillère.

sinon tous les timbres seront comme imprégnés de cette sonorité « creuse » caractéristique. Les timbres cordes, en particulier, tireront tous sur le tuyau, quels que soient les circuits formants introduits à la suite. C'est donc très important. Avec B abaissé, l'image obtenue est moins critique (fig. 15 c et d).

Sur la plaque 6 J 5, nous trouverons une tension efficace d'environ 21 V pour B relevé et 2,5 V pour B abaissé.

Brancher ensuite le voltmètre à lampes à la place de la fiche coaxiale femelle ramenant la sortie de boîte progressive vers le châssis B (les circuits de 6 J 7, circuits formants et de genouillère étant de ce fait hors circuit). Nous pouvons alors vérifier isolément le rapport des tensions « début d'enfoncement boîte progressive » et « fin d'enfoncement ». Le bloc A étant livré câblé et réglé par le constructeur, il suffira simplement de vérifier que ce réglage est correct.

Pour cela, enfoncer à fond la touche do du milieu du clavier, registre IV. On doit lire au voltmètre élec-

tronique, B étant relevé, 2,5 V eff environ. Lâcher progressivement la touche do jusqu'à 2 mm environ de sa position de repos. La tension doit être au moins six fois inférieure à la tension maximum, soit 0,4 V eff environ. Les tensions maximum peuvent varier d'une Ondioline à l'autre; mais le rapport doit rester au moins égal à 1/6 (on constate parfois 1/10, ce qui ne présente aucun inconvénient). Par contre, un rapport trop faible se traduira par un mouvais rendement du jeu expressif. La cause peut être ou non un déréglage de la boîte progressive; c'est pourquoi il est utile de vérifier préalablement ce circuit comme exposé ci-dessus.

Si l'on lâche complètement la touche, le rupteur de silence fait son office et toute tension alternative disparaît, à l'entrée comme à la sortie de la boite d'attaque. Si une tension alternative persiste, procéder au réglage du rupteur de silence. Pour cela, la touche étant complètement relâchée, desserrer lentement la petite vis de réglagle marquée S sur la figure 11 du chapitre précédent. Par contre, si la tension minimum n'apparait qu'après enfoncement de plus de 2 ou 3 mm de la touche, c'est que la même vis est trop desserrée. Précisons que cette distance est mesurée au bord avant de la touche blanche.

Pour une retouche éventuelle du réglage de la boîte d'attaque progressive, utiliser l'écrou de réglage prévu à cet effet (figure 11 du précédent chapitre). En serrant cet écrou, on remonte la partie inférieure de la boite, et par conséquent les pavés de semi-conducteur, par rapport à la palette mobile, ce qui peut être nécessaire après quelques mois de fonctionnement si la boîte s'est légèrement affaissée. Au repos, la palette mobile ne doit pas toucher les pavés, mais elle peut en être très proche, soit 1 mm par exemple, sans inconvénient. Par contre, avec une boîte trop abaissée, les attaques seront trop flasques ou pourront « cogner ». Autant que possible, ne pas retoucher sans motif sérieux le réglage de cette boite. Et toujours bien vérifier, après retouche éventuelle, que l'on conserve le rapport minimum/maximum de 1/6 ou davantage.

La boîte d'attaque étant vérifiée, brancher le V.E. ou l'oscilloscope sur l'entrée du potentiomètre de genouillère, après avoir rebranché normalement la fiche coaxiale femelle vers le bloc B. Vérifier que le rapport minimum/maximum mesuré en ce nouveau point est toujours correct. S'il n'en était pas ainsi, c'est qu'une induction parasite, entre l'amont et l'aval de la boîte, se produit quelque part. En chercher l'origine : fil non ou mal blindé, inductions entre timbres B et A ou B et C, etc. Cette induction doit être absolument éliminée, sinon l'attaque serait « miaulante », non franche, l'oreille entendant une variation de timbre caractéristique lors de l'enfoncement progressif d'une touche.

Avant d'aller plus loin, vérifions encore quelques tensions alternatives au V.E., les leviers de timbres étant toujours relevés : sur grille penthode 6 K 7 ou 6 BA 6 ; 1,5 V; sur l'anode, donc sur l'entrée du potentiomètre genouillère, 13 V et, à l'oscilloscope, (fig. 16 b) une image naturellement inversée par rapport à l'image de grille, mais agrandie sans grande distorsion apparente.

Accord

Avant de passer à l'examen des circuits de formants, de percussion ou de vibrato automatique, le moment est opportun de parfaire l'accord, sinon les images observées risqueraient d'apparaître différentes pour des instruments et bobinages cependant identiques.

C'est ici que le technicien doit être doublé d'un musicien, ou se faire doubler par un ami ayant plus ou moins taquiné dans sa jeunesse le violon ou la guitare, et sachant par conséquent ce que signifie un demi-ton, une tierce, une quinte ou un intervalle d'octave. Peut-être se formera-t-il ainsi, parmi les lecteurs de cette brochure, des tandems rappelant la fable de l'aveugle et du paralytique... (« Jeune technicien radio cherche voisine musicienne pour construire ensemble Ondioline; pas douée ou pas sérieuse s'abstenir »!).

Mais, répétons-le, ce travail de mise au point est moins compliqué que celui qui consiste à accorder les quatre cordes d'un violon, de quinte en quinte. De plus, le bloc clavier est livré préalablement essayé et accordé sur un châssis B étalon; le constructeur-amateur n'aura donc que quelques retouches légères à effectuer pour parfaire l'accord.

Vérifier d'abord que le potentiomètre d'accord général (fig. 17) permet d'obtenir au total une variation de 3 demi-tons (par exemple pour une note centrale du clavier). S'il n'en était pas ainsi, diminuer ou augmenter légèrement la valeur de la résistance de 40 kΩ insérée sous soupliso (fig. 12 du précédent chapitre) entre départ H.T. de l'oscillateur et connexion aboutissant au bouchon octal. En augmentant cette résistance, on diminuera la plage couverte par l'accord et inversement. Toute plage inférieure à 3 demi-tons rendrait parfois délicate la mise au diapason instantanée de l'instrument lors du jeu avec un orchestre, accordéon ou piano, accordé lui-même trop haut ou trop bas. Inversement une marge supérieure est à déconseiller, car la tension alternative distribuée sur la cathode (B relevé) diminue si la résistance de charge d'anode, dont fait justement partie la résistance de 40 k Ω , diminue par trop. Il en résulte alors une répercussion sur l'écrêtage par la 6 J 5, ainsi que sur la justesse générale.

Après correction éventuelle de cette résistance, remettre le bouton d'accord général à mi-course. La phase suivante consiste en une retouche éventuelle des potentiomètres R_{vi} à R_{vi}, qui permettent, rappelons-le, de compenser l'action des capacités parasites inévitables entre grille et masse du tube oscillateur. Suivant qu'on les tourne dans un sens ou dans l'autre, ces potentiomètres raccourcissent ou élargissent, musicalement parlant, l'écart entre les deux derniers sols les

plus aigus du clavier. La marche à suivre est la suivante :

Rester en position IV de la clé d'octaves. Faire sonner alternativement les deux touches sol les plus à droite. Sans tenir compte de la hauteur absolue de ces sons, écouter s'ils sont bien à un intervalle d'octave. Pour y parvenir, tourner dans un sens ou dans l'autre, suivant nécessité, le potentiomètre R_{v1}. Après satisfaction, passer au registre III et mettre à l'octave les deux sols de droite, cette fois à l'aide du potentiomètre R_{v2}. Passer ensuite sur le registre II et régler à l'aide de R_{v2}, puis sur le registre I, avec R_{v1}.

Mise au diapason

Ici, le lecteur doit disposer d'une note de référence. Une solution consisterait à se précipiter chez le plus proche marchand d'instruments de musique, à y acheter une Ondioline standard (1) et à s'en servir pour accorder par comparaison l'Ondioline home made...

Autre solution: acheter dans le même magasin un diapason à bouche (2) donnant le las (435 Hz), et qui rendra rigoureusement le même service! Notons en passant que les abonnés au téléphone de la Région parisienne peuvent décrocher le récepteur et écouter: les P.T.T. diffusent gratuitement, jour et nuit, le sols de la gamme tempérée...

Cela fait, se remettre sur la position IV de la clé d'octaves. Vérifier que le bouton d'accord général est bien à mi-course. Appuyer sur une touche la au clavier (dans le cas du diapason), ou sur une touche sol (dans le cas de l'étalon P.T.T.). Bien choisir ce la ou ce sol dans la partie centrale

⁽²⁾ Prix de vente au détail : 70 francs environ.

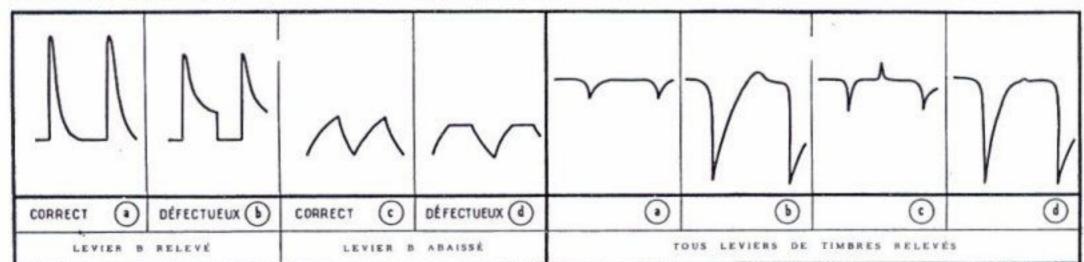


Fig. 15. — Par un réglage judicieux de la résistance de cathode de la triode de liaison (6J5 ou 1/2 12 AU7), l'on obtient sur l'anode une image « correcte » c'est-àdire rabotée à dessein lorsque le levier de timbre B est relevé; par contre, B étant abaissé, l'onde appliquée sur la grille de la triode est beaucoup plus faible, et doit se retrouver sans déformation — ou presque — sur son anode.

Fig. 16. — Oscillogrammes relevés sur l'entrée genouillère lors de l'essai de la boite d'attaque progressive. Un instrument correct procure les images a pour l'enfoncement minimum de la touche et b pour l'enfoncement maximum. En c et d, figures correspondantes pour une Ondioline présentant une induction parasite entre amont et aval de la boite progressive.

⁽¹⁾ Prix de vente au détail : 191 750

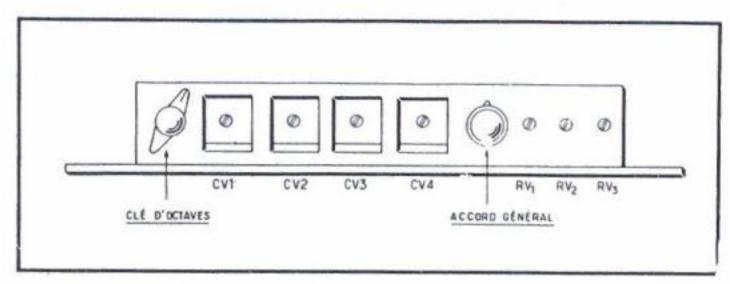


Fig. 17. — Disposition des principaux organes de commande et de réglage. Le potentiomètre R., est accessible par le dessous de la platine support de clavier (revoir la figure 1, page 24, du précédent numéro).

gauche du clavier. Procéder à la retouche nécessaire en agissant maintenant uniquement sur les condensateurs C_{v1} à C_{v4}, dont le rôle est de faire monter ou descendre uniformément toutes les notes du clavier en même temps.

Pour cela : étant sur le registre IV, s'accorder au diapason en tournant dans le sens convenable, à l'aide d'un tournevis à manche isolé, la vis à tête fendue de Cv. L'Ondioline émet à ce moment le sol, ou le la, et il faut donc faire l'accord, non à l'unisson. mais à l'octave, ce qui n'est pas une difficulté. Passer ensuite sur le registre III et régler avec C13; même chose pour le registre II, puis pour le registre I. Si la marge de variation d'un des C.V. s'est avérée insuffisante, bien vérifier que d'autres circuits du bloc B ne sont pas en cause (résistance de 40 kΩ mal calibrée, tension stabilisée incorrecte, etc.). Le bloc A ayant été accordé au préalable par le constructeur, seule une différence faible, d'un quart de ton au maximum, doit être constatée éventuellement lors de l'assemblage des blocs A et B.

De toute façon, et cela tombe sous le sens pour qui observe attentivement le schéma des circuits d'accord, toute retouche, qu'il s'agisse d'action sur R_{g1} à 4 ou R_{v1} à 4, doit être effectuée toujours en commençant par le registre le plus aigu (registre IV).

Signalons que, lors de la mise au point du bloc A, les condensateurs fixes d'appoint ont été choisis de valeurs telles qu'une marge suffisante subsiste toujours pour qu'il soit possible, par manœuvre des C.V. correspondants, de monter ou descendre d'un demi-ton si nécessaire, lors d'un réglage ultérieur. Ne se décider à rajouter ou retrancher une partie de ces valeurs d'appoint fixes qu'après avoir bien vérifié les autres circuits de l'oscillateur. N'utiliser en cas de remplacement que des condensateurs de très bonne qualité (par exemple type M 1500 Stéafix). S'assurer également que la 12 AU 7 utilisée comme oscillatrice a bien été vérifiée préalablement (une marque de peinture rouge est faite sur le verre de chaque tube fourni après étalonnage sur un châssis B en laboratoire).

Après ce premier réglage, un musicien à l'oreille difficile sera tenté de fignoler l'accord général, en recommençant une ou deux fois cette opération d'équilibrage entre les réglages R.,-C., R.,-C., etc., un peu comme sont retouchés les paddings et trimmers d'un changeur de fréquence.

Réglage des timbres

A défaut d'oscilloscope, l'oreille sera ici évidemment le seul juge. Aidonsla cependant quelque peu en indiquant tout de même les tensions alternatives moyennes à mesurer à l'aide du V.E. au point « entrée genouillère ». Le tableau de la page 23 donne, pour l'abaissement d'un certain nombre de leviers « clés », la tension et les images normales. Ces mesures sont effectuées avec le potentiomètre de genouillère à zéro, tout d'abord, puis avec le levier progressivement poussé, l'oreille écoutant et l'œil suivant l'image sur l'oscilloscope. On s'apercevra d'ailleurs ici que, souvent, une différence très importante pour l'oreille passe inaperçue sur l'écran, et que, parfois, une différence considérable sur l'oscilloscope n'est pas du tout génante et procure même à l'occasion un excellent résultat à l'audition. Voilà qui consolera tous ceux qui préféreront construire l'Ondioline avant l'oscilloscope...

Réglage de la percussion

L'inverseur de percussion ayant été réglé avec les autres organes du bloc A, il n'y a plus, en principe, à y retoucher. Voici cependant quelles ont été les normes de ce réglage. Les trois temps sont : 1° Charge du condensateur sur la H.T.; 2° Temps mort, pendant lequel le condensateur a quitté

le contact avec le circuit de charge et n'est pas encore branché au circuit de décharge; 3° Décharge du condensateur dans le circuit d'écran. Ces trois temps doivent se dérouler seulement à partir du moment où la touche est déjà enfoncée à mi-course. De la sorte, il n'est pas nécessaire de lâcher une touche jusqu'au silence avant d'en enfoncer une autre. Il suffit de relever seulement à mi-course environ la note que l'on vient de faire, pour qu'à la note suivante l'effet de pincement se reproduise. D'autre part, si l'électrode-inverseur venait à toucher en même temps les contacts repos et travail, cela se traduirait par un claquettement désagréable, d'où la nécessité de bien respecter les trois

La vérification sera effectuée à l'œil ou à l'aide d'une sonnette. Noter que si l'on touche à la vis centrale PT (fig. 11 du chapitre précédent), qui sert à régler la position du contact de la percussion, le bloc unique de matière isolante qui supporte à la fois le rupteur de silence et l'inverseur percussion monte ou descend. Il sera donc peut-être nécessaire, après réglage de la percussion, de retoucher légèrement le réglage de la vis S' de silence.

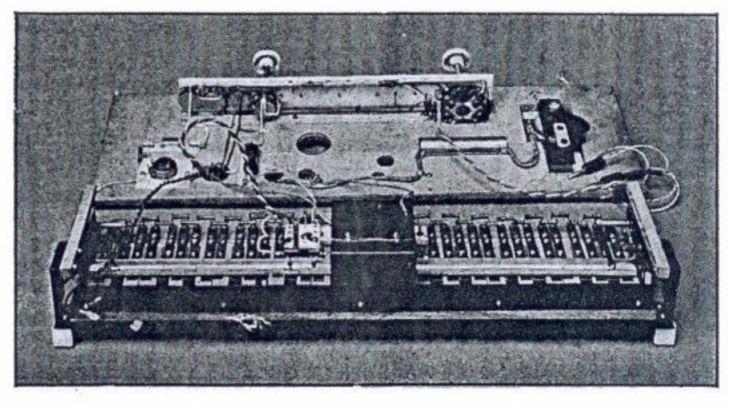
Si cette attaque « corde pincée » ne donnait pas entière satisfaction, agir iventuellement sur la tension délivrée par le pont d'alimentation de l'écran. Penser aussi à essayer une autre penthode. Suspecter éventuellement le condensateur de 0,5 µF. Des corrections pourront d'ailleurs être trouvées quant à l'acuité et également quant à la durée d'évanouissement sonore après percussion (résistances en série avec le 0,5 µF, dans l'écran, dans la H.T.; condensateurs additionnels sur le 0,1 µF d'écran; etc.).

Mise au point du vibrato automatique

Brancher un voltmètre, électronique ou non, déviation totale pour 300 V continu, entre plaque 1 de la lampe de vibrato et la masse. Laisser les leviers V₁, V₂ et W levés pour l'instant. Tourner le potentiomètre P_v (c'est ce potentiomètre qui commande la vitesse la plus lente du vibrato, lorsque le levier W est relevé). Pour une certaine position de P_v, on verra l'aiguille du voltmètre osciller rapidement, au rythme des impulsions délivrées par la lampe de vibrato. On en conclura que le montage de ce circuit est correct.

Abaisser alors V₁ ou V₂ de façon à pouvoir régler la vitesse à un rythme plus lent, réglage qui était impossible tant que les 30 kΩ restaient en parallèle sur P_v, à travers les contacteurs V₁ et V₂ relevés. Abaisser le contacteur W, et procéder au réglage grossier de la vitesse : avec W relevé.

la pulsation doit être de 5 Hz environ; avec W abaissé, elle sera de 7 à 8.


Ne pas s'attarder d'ailleurs à ce réglage visuel, qui risque d'être faussé par la résistance interne du voltmètre. Déconnecter l'instrument et écouter l'effet de vibrato. En abaissant Vi tout d'abord, régler Pvi de façon à obtenir une modulation de fréquence assez discrète en profondeur. Puis abaisser Ve et laisser Pve dans une position telle que la modulation obtenue soit plus énergique. Régler à nouveau, avec plus de précision cette fois, les vitesses à l'aide de Pve (levier W en l'air) et Pve (levier W en bas).

Mandoline

Abaisser le levier D et, naturellement, un timbre adéquat, tel que FH. Du fait que V_1 et V_2 restent relevés, la résistance de 30 k Ω branchée en parallèle sur R_{v1} de la lampe de vibrato porte la vitesse de pulsation à une valeur correspondant au va-etvient rapide du médiator du mandoliniste. Rien n'empêche de remplacer cette résistance par un potentiomètre de 50 ou 100 k Ω et de rendre ainsi réglable cet effet spécial.

Vibrato manuel

Nous terminerons par ce réglage, qui est le plus délicat, car il ne doit être ni trop, ni trop peu sensible. D'autre part, la variation en fréquence qu'il provoque ne doit être ni trop faible, ni trop exagérée, auquel cas se produirait un chevrotement. Tel qu'il est livré, incorporé au bloc clavier, il a été réglé et vérifié, et nous prions les utilisateurs de ne pas y toucher sans nécessité absolue. Tout au plus conviendrait-il, après expérimentation sérieuse, de décider par goût personnel d'en augmenter ou diminuer la sensibilité. Agir alors sur la valeur des condensateurs fixes mis en série avec le C.V. de vibrato. Mais toute modification de la valeur de ces condensateurs devra être obligatoire-

Bloc A, ou bloc clavier de l'Ondioline, vu de dessous. Le blindage noir, au centre, abrite la boite d'attaque expressive.

ment corrigée par une légère retouche au réglage des condensateurs d'accord C_{v1} à C_{v4} puisque les contensateurs de vibrato sont en parallèle avec eux.

Vérifications complémentaires

Tout d'abord, une dernière chasse aux inductions parasites qui ont pu subsister :

1" Inductions indésirables entre circuit grille et circuit plaque de la penthode: appuyer à fond sur la touche do du milieu du clavier, en registre IV, tous les leviers de timbres relevés. Mesurer la tension sur la grille 1, soit par exemple 1,5 V eff. Enlever la penthode et mesurer la tension alternative sur l'entrée genouillère. Elle doit être nulle ou inférieure à 15 mV eff. Sinon, des connexions en amont et en aval de cette penthode sont trop voisines, insuffisamment blindées, etc.

2" Remettre la penthode sur son support et abaisser le levier P. Enfoncer à nouveau la touche do. Après effet de percussion, la tension alternative sur la plaque penthode, ou à l'entrée genouillère, tous timbres relevés, sauf P, décroît et tend vers zéro. Si une tension alternative résiduelle trop importante, supérieure par exemple à 15 mV subsiste, soupçonner les découplage H.T. insuffisants, une fuite dans le condensateur papier de découplage de l'écran (10 nF), ou une valeur trop importante de ce condensateur.

3" Enfin, entre le circuit d'entrée et le circuit de sortie du potentiomètre Pg, vérifier que les fils sont blindés individuellement et cela jusqu'à 1 mm si possible des cosses d'arrivée sur le potentiomètre. Sinon, un condensateur parasite de très faible capacité, mais non négligeable pour certains timbres, se trouve en permanence entre l'entrée du potentiomètre et son point milieu. Pour certaines combinaisons de timbres, on entend très nettement une différence suivant que la genouillère est plus ou moins poussée, le son étant plus aigrelet en début qu'en fin de course.

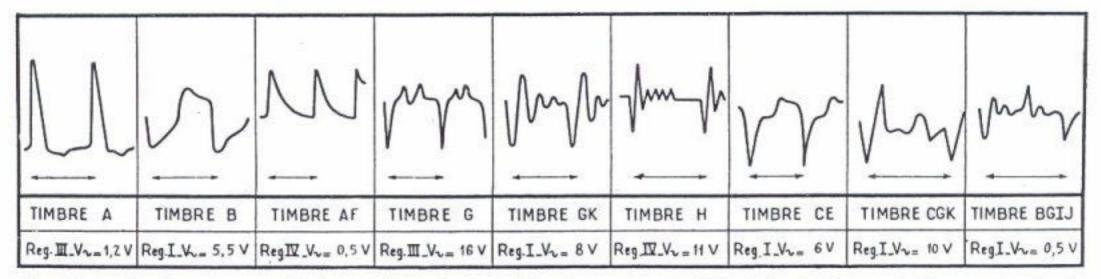


Fig. 18. — Oscillogrammes relevés sur l'entrée genouillère lorsque sont abaissés les leviers principaux, pour le do central du clavier. Les flèches délimitent une période de la fondamentale. Les tensions sont des valeurs moyennes, de crête à crête.

Ronflements parasites

En cas de ronflements, vérifier le filtrage de la haute tension. S'il n'est pas en cause, voir si le ronflement provient du circuit de filaments, et pour cela déconnecter durant quelques secondes les circuits de filaments en laissant la haute tension branchée. Si le ronflement disparaît, essayer de changer le côté de mise à la masse des filaments, ou encore recourir au système classique du point milieu artificiel, réalisé avec un potentiomètre « loto » de quelques centaines d'ohms. Le réglage est alors effectué à l'oreille jusqu'à suppression du ronflement.

Dans certains cas, une modulation en fréquence des notes de l'instrument pourra être constatée. Vérifier encore le filtrage H.T.; s'il est innocent, chercher expérimentalement la meilleure orientation des bobines C, G et H, et, en cas de détresse, éloigner le transformateur d'alimentation du bloc B.

Les deux défauts ci-dessus peuvent avoir une origine non plus magnétique, mais statique (absence d'écran dans le transformateur d'alimentation, par exemple). Dans ce cas, il sera plus simple, de toute façon, de recourir à la solution adoptée dans les Ondiolines du commerce : condensateur de 100 nF entre une des entrées du primaire du transformateur d'alimentation et masse du châssis (surtout, ne pas mettre un condensateur à chaque extrémité du primaire, car leurs effets s'annuleraient). Si le secteur comporte un neutre mis à la terre, repérer le sens correct de branchement dans la prise de courant. Enfin, solution énergique et efficace, supprimer ce découplage et prévoir une simple prise de terre.

Mise au point de... l'Ondioliniste.

L'être humain ne comportant pas, comme ces robots de l'avenir dont

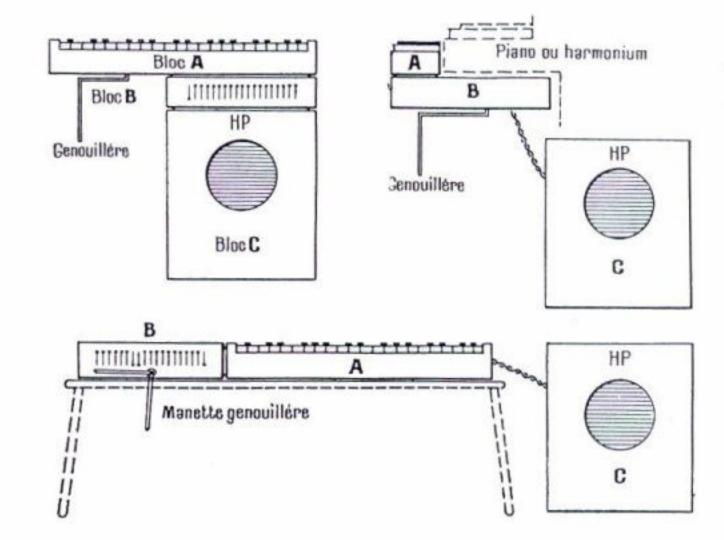


Fig. 19. — Quelques idées pour la disposition relative des différents blocs constitutifs d'une Ondioline. Il est encore possible d'envisager une combinaison avec tourne-disques, magnétophone, radio, télévision, bar, bibliothèque, etc.!

nous parlent les revues de science fiction, de vis de réglage émergeant de différents points du système nerveux, le problème est plus délicat...

Le mieux pour le lecteur est de relire maintenant très attentivement les deux premiers chapitres consacrés à l'analyse fonctionnelle des instruments de musique en général (septembre et novembre). Et comme nous ne pouvons pas donner ici un cours d'initiation musicale, nous nous permettrons de renvoyer les débutants à la méthode déjà citée (3), complétée éventuellement par une des méthodes très rationnelles qui existent aujourd'hui pour apprendre à déchiffrer rapidement la musique, jouer en mesure, etc. (4).

Et, pour terminer, rappelons le secret de la réussite: une demi-heure par jour d'entraînement, bien régulièrement, surtout pendant les deux premiers mois. Cela suffit pour prendre le bon départ et devenir rapidement un exécutant correct.

Nous serons heureux si nous avons ainsi réussi, avec l'aide de tous ceux que la question intéresse, à contribuer à la création d'un centre d'intérêt autour de la lutherie électronique, violon d'Ingres et source précieuse de « loisirs artistiques actifs », ces loisirs qui, si l'on en croit les sociologues. occuperont la majeure part de la vie de l'homme de l'an 2000...

⁽³⁾ Premiers conseils à l'ondioliste (Editions Le Chant du Monde).

⁽⁴⁾ Méthode Pleyel pour les cnfants, méthode Leyat, méthode Thiberge, etc.